Fotografía digital y Kodak (2)

febrero 13, 2020 on 6:39 pm | In colección, hist. fotografía, vídeo y tv | 1 Comment

Adolfo García Yagüe | En 1985, tras el lanzamiento de la Sony Handycam, aparecen las primeras cámaras fotográficas con CCD. Son años donde compañías japonesas como Canon, Nikon, Casio y la citada Sony empiezan a liderar un mercado que, a diferencia con lo que sucede con el vídeo, no termina de ser masivo. Esta lentitud en la adopción obedece a su elevado precio, aparatosidad y pobre calidad de imagen en comparación a una fotografía convencional y, sobre todo, porque los usuarios seguimos queriendo tener fotos impresas. Ésta “querencia” al papel contrastaba con la necesidad de contar con un reproductor de Video Floppy Disk -o la propia cámara fotos electrónica- conectada a un televisor para poder presumir de vacaciones.

Es a principios de los ’90 del siglo pasado, coincidiendo con aquella lenta adopción de la fotografía digital, cuando aparece Kodak Photo CD, un servicio con el que Kodak pretendía seguir manteniendo las ventas de sus tradicionales carretes y ofrecer al usuario un CD con las fotos digitalizadas para que estas fuesen visualizadas en una televisión conectada a un reproductor Photo CD de Kodak. Eso sí, en la codificación digital de las fotos y su compresión se empleaba un algoritmo cuyo funcionamiento nunca fue divulgado por Kodak. Este modelo comercial, con el que Kodak pretendía mantener cautivos a sus clientes, fue efímero ante la bajada de precios de los escáneres, los CDROM grabables y empleo de la codificación y compresión JPEG.

En 1992, con la aparición de JPEG (Joint Photographic Experts Group), se disponía -por fin- de un estándar público que permitía bajar el tamaño de una fotografía. Aunque ésta compresión sacrificase detalles de una imagen y era de menor calidad que el estándar TIFF (Tagged Image File Format), desarrollado en 1986 por Aldus Corporation, era una alternativa de uso libre que terminó siendo adoptada por todo el mercado. Esta disminución del tamaño del fichero mediante JPEG o TIFF tenía dos aplicaciones claras que un usuario podía percibir. Por un lado era posible recurrir a sistemas de almacenamiento en la propia cámara con memorias de estado sólido, prescindiendo así de costosos sistemas mecánicos como el Video Floppy Disk. Por otra parte, aunque un poco lento, era posible hacer una transferencia de fotos entre la cámara y un ordenador a través de una conexión serie RS-232 abriendo la puerta al uso de herramientas software de edición fotográfica como Adobe Photoshop.

En esta lenta evolución de la fotografía digital era necesario contar con un visor electrónico que reforzase la inmediatez de esta tecnología. Para atender esta necesidad Casio presentó en 1995 la QV-10, convirtiéndose en la primera cámara fotográfica que disponía de una pequeña pantalla de cristal líquido (LCD) con la que era posible tomar una instantánea de lo que realmente se estaba visualizando en el LCD o revisar las fotos ya hechas. Como se demostró, este visor resultaba también de mucha utilidad al informar a través de él de detalles técnicos de la foto o de la configuración de la propia cámara.

Si los cambios anteriores fueron seguidos de manera unificada por todos fabricantes, con las memorias y sistemas de almacenamiento hubo menos consenso. A esta conclusión es fácil llegar tras echar un vistazo a aquellos años. Por un lado vemos como en 1995 Ricoh se adelantaba presentando una cámara fotográfica con capacidad para grabar video y tarjeta PCMCIA de memoria Flash de Intel de 4Mb y, en el polo opuesto, comprobamos como en 1998 las máquinas Mavica de Sony basaban el almacenamiento de sus fotos en un diskette de 3” ½ de 1,4Mb. Y ya, en el colmo de querer imponer sus estándares, Sony sorprendió a todos presentando en octubre de 1998 la tarjeta Memory Stick, cuando la batalla por el futuro del almacenamiento ya se dirimía entre el formato CompactFlash (SanDisk) y SmartMedia (Toshiba).

Aquella apuesta por discos flexibles que Sony hacía en la serie Mavica solo se podía explicar si se pensaba en la necesidad de comunicar de una forma rápida la cámara de fotos con un ordenador y no depender así de la lentitud del RS-232 ya que, este disquete, al poder ser formateado con una estructura de archivos compatible con MS-DOS, podía ser leído por cualquier ordenador personal. Aquel uso de los diskettes evidenciaba que era necesario mejorar la comunicación entre ordenadores y dispositivos multimedia, entre los que se encuentran las cámaras de fotos y los incipientes reproductores MP3, y es la razón por la que aparecieron dos interfaces de conexión que venían a relevar al viejo RS-232. FireWire, el primero de ellos, fue presentado por Apple en 1995 para transferir archivos a una velocidad de hasta 400Mbps e inmediatamente fue adoptado por los fabricantes de cámaras de vídeo MiniDV y normalizado como IEEE 1394. Aunque fue seguido por muchas compañías, sus patentes y su licenciamiento eran caros. Es por eso que al año siguiente, en 1996, se desarrolló el interface USB (Universal Serial Bus) por un consorcio de compañías entre las que destacaban Intel, Compaq, Microsoft e IBM. Como vemos, poco a poco se iba dando forma a lo que hoy es básico en cualquier cámara digital.

Eran años en los que Kodak era protagonista de estos cambios con sus cámaras digitales pero sin desatender su negocio tradicional. De hecho, el 14 febrero de 1997, el precio de sus acciones alcanzó su máximo histórico. ¿Con semejantes datos, qué Consejo de Administración es capaz de intuir lo que sucedería en los años siguientes? No obstante la situación era engañosa y lanzamientos de cámaras como la DC 260 (disponía de USB y memoria CompactFlash) y los ranking de ventas de cámaras digitales en EE.UU. -que le situaban entre los primeros puestos- eran un espejismo tras él que se escondía una organización de 86.000 personas de las cuales, un porcentaje muy alto, se dedicaba a la industria química de la fabricación y procesado de carretes. Es decir, gran parte de su tamaño, instalaciones y equipo directivo dependía de un ecosistema -la foto tradicional- y ante cualquier cambio en ese mercado sería imposible sustentar a la compañía. Así pasó. Por un lado el uso de la fotografía tradicional se empezó a resentir unido a la presión competitiva de compañías como FujiFlim. Por otra lado, en la fotografía digital era difícil innovar y diferenciarte sin ser Sony, Nikon o Canon.

En estos casos no es fácil tomar decisiones acertadas pero, quizás, en los ’90, Kodak tendría que haber tomado la iniciativa de desinversión ordenada en fotografía tradicional, y décadas antes poner en marcha una nueva Kodak -con otro equipo gestor- que no estuviese tan influenciado por el legado de éxitos pasados y ajeno al conflicto de intereses con el negocio histórico. Sólo así, con esta separación organizativa, se hubiese podido valorar y desarrollar adecuadamente la introducción en el mundo de la televisión y del vídeo en los años sesenta del siglo anterior; o dar continuidad a una invención como la cámara fotográfica con CCD en 1975; acertar en los ochenta en la correcta introducción en el mercado de las videocámaras o ya, en el principio de la década de los ’90, con Photo CD, las nuevas cámaras o la impresión digital. Una vez más a Kodak le faltó dar continuidad a una buena idea inicial, como en su entrada en Internet al comienzo del Siglo XXI con la compra de la plataforma Ofoto. O el error de haber litigado con Apple, Samsung, HTC o RIM (Blackberry) en el 2010 por la propiedad intelectual de la representación de imágenes en un teléfono móvil, cuando hubiese sido más acertado aproximarse amistosamente a estos y otros fabricantes de telefonía para introducir su conocimiento en fotografía. Fijaros que en cada década cometieron un error con un impacto trascendental… por todo ello Kodak acabó declarándose en bancarrota en enero del 2012.

Colección | Kodak, química y vídeo (1) | Polaroid, la fotografía instantanea y Kodak (y 3)

Kodak, química y vídeo (1)

enero 30, 2020 on 5:58 pm | In colección, hist. fotografía, vídeo y tv | No Comments

Adolfo García Yagüe | Hay veces que toda una industria y los principios que la sustentan cambian y, en ese momento, quien era líder de un sector languidece en favor de compañías más humildes o desconocidas. Esos cambios -que rara vez son súbitos- son fáciles de analizar desde la perspectiva que da el tiempo para encontrar una explicación que ponga algo de cordura a lo sucedido. No obstante, cuando el cambio se está produciendo, los Consejos de Administración y sus analistas más sabios no suelen ponerse de acuerdo en lo que pasa y rara vez, la compañía hegemónica afectada, es capaz de valorar el riesgo al que se enfrenta y así reaccionar a tiempo. Esto es lo que pasó con la industria fotográfica y cinematográfica basada en procesos químicos y Kodak.

En 1888 George Eastman (1854-1932) patentaba un sistema que revolucionaría la fotografía y poco después puso en marcha una empresa para comercializarlo: la Eastman Kodak Company. Hasta aquel invento el arte de fotografiar resultaba complejo y lento al requerir la manipulación de delicadas placas de cristal impregnadas en productos químicos que registraban una imagen. El invento de Eastman se basaba en una cinta de papel ya tratada químicamente, enrollada en un carrete, con la que era posible sacar hasta 100 fotos. Este carrete se vendía junto con la cámara de fotos y, al concluir el trabajo fotográfico, se entregaba la cámara a Kodak -con el carrete en su interior- para que fuese revelado en papel. Con el fin de simplificar y abaratar este proceso, en 1910 se estableció como estándar un carrete extraíble de película fotográfica inventado por el alemán Oskar Barnack (1879-1936), que a su vez derivaba de una película de celuloide de 35mm de anchura empleada en el Quinetoscopio de William Dickson (1860-1935) y Thomas Edison (1847-1931). Aquel carrete extraíble permitió desligar película y cámara facilitando así el desarrollo de otros fabricantes de máquinas fotográficas, de esta época son especialmente relevantes las cámaras de la alemana Leica (1913) o la japonesa Nippon Kōgaku Kōgyō Kabushikigaisha (1917), posteriormente renombrada como Nikon.

Así mismo, el proceso de revelado se fue abriendo para que ciertos establecimientos autorizados por Kodak lo realizasen. A cambio estos laboratorios estaban obligados a emplear los productos químicos y carretes de 35mm de esta firma. Este compromiso con Kodak era una forma de frenar la entrada de Agfa (Alemania) o la japonesa Fuji Photo Film. Existía competencia pero Kodak podía presumir de una posición dominante en los mercados fotográfico, cinematográfico e incluso en el médico con las radiografías. En este sentido merece la pena recordar que no fue hasta 1955 cuando un tribunal de EE.UU. sentenció que Kodak debía hacer público el proceso aplicado al revelado de sus películas Kodachrome y no incluir –en un carrete vendido en EE.UU- el precio del revelado para que así el usuario tuviera otras opciones.

A pesar de los conflictos judiciales y del incremento de la competencia, Kodak y el resto de compañías se encontraban cómodas en su mercado y atesoraban un control absoluto de su ciencia básica. Aparecieron cámaras legendarias como las de la propia Kodak o las de las compañías antes citadas; la película de cine incorporó sonido; color gracias a Technicolor e incluso Polaroid inventó la fotografía instantánea y la película Kodachrome de Kodak era sinónimo de calidad absoluta. En grandes producciones se podía filmar en 70mm para ofrecer mayor calidad de imagen y, para trabajos de aficionados y profesionales de la información, se podía recurrir a formatos más portables y cómodos como 16mm, 8mm o el entrañable y familiar Super 8. Se puede decir que desde su invención, un siglo antes, el cine y la fotografía basada en procesos químicos y físicos alcanzaron la cúspide de la perfección.

En la década de los ’50 del siglo pasado la televisión no podía competir con la calidad de imagen ofrecida en una filmación en 35mm. Quizás fue la época cuando los grandes colosos de la imagen, entre ellos Kodak, llegaron a la conclusión que la ciencia de la captación de imágenes mediante un tubo de vacío llamado Iconoscopio ofrecía poca calidad y que aquello resultaba ajeno a su negocio principal y no merecía la pena ser tomado en consideración. Incluso, a pesar de que los primeros sistemas para el registro de imágenes de televisión, o Kinescopios, estaban basados en una película de 35mm y una cámara Kodak, cuando aparecieron las cintas magnéticas esta compañía volvió a infravalorar la electrónica y no supo entender su potencial.

Aunque ya se conocían los semiconductores o electrónica de estado sólido, la captación de imágenes dependía de un tubo de vació llamado Iconoscopio inventado en RCA (Radio Coporation of America) en 1931 por Vladimir Zworykin (1888-1982) y, posteriormente, el Orticón y el Vidicón, desarrollado también en RCA en 1950 por Paul Weimer, Stanley Forgue y Robert Goodrich, o sus mejoras como el Plumbicón (Philips), Saticón (Thomson) o Trinicón (Sony). De igual forma, para la representación de imágenes en una pantalla electrónica, se recurría a pesados tubos catódicos de cristal. Y por último, para la grabación del vídeo, se contaba con magnetoscopios de bobina de cinta magnética. Como podemos comprobar el paisaje tecnológico cambiaba radicalmente y, para una empresa que llegase desde la fabricación y venta de productos químicos y carretes fotográficos, aquello era todo un desafío por su complejidad. Aun así, la mayoría de las compañías que operaban en el mercado tradicional de la fotografía gozaban de mayor capitalización y tamaño y, si hubiesen querido, podrían haberse hecho un hueco a través de la absorción de empresas electrónicas.

En los años 50 y 60 del siglo asistimos al desarrollo de compañías que lograron hacerse un hueco en este nuevo mercado. Compañías como Sony y la también japonesa JVC (Japan Victor Company), en sus orígenes subsidiaria de la americana Victor Talking Machine, carecían del tamaño y reconocimiento de compañías occidentales como RCA o Philips pero, a pesar de esta inferioridad, se ganaron el reconocimiento con grandes productos para visualizar vídeo (televisores), captar (videocámaras) o grabarlo (magnetoscopios).

Al finalizar la década se precipitó la innovación en este sector con la invención en 1969 del sensor CCD (Charge-coupled device) por Willard Boyle (1924-2011) y George E. Smith (1930), de los Laboratorios Bell, y su comercialización al año siguiente por Fairchild. Con el CCD se abría la puerta al registro de una imagen a través de un dispositivo semiconductor, de menor consumo eléctrico, mucho más pequeño y resistente que un tubo vidicón. Por otra parte, Sony presentaría el mismo año el sistema profesional U-Matic y en 1975 el sistema Betamax para uso doméstico, ambos sistemas de grabación estaban basados en casetes de cinta magnética mucho más cómodos y menos aparatosas que las bobinas de cinta. Con cierta similitud en su aspecto, pero más flexible en su licenciamiento por otras compañías, en 1976 JVC lanzaría al mercado el sistema VHS (Video Home System).

En los años sucesivos se mejoró y disminuyó el tamaño de grabadores y cámaras Beta y VHS. Sin embargo, la adopción del CCD en las cámaras fue lenta al no ofrecer la misma calidad de imagen que un tubo vidicón, quedando relegado a aplicaciones muy concretas como los primeros escáner, OCR (reconocimiento óptico de caracteres) e inspección industrial. Es por eso que sorprende conocer que Kodak fue el primer fabricante que construyó un prototipo de una cámara fotográfica basada en CCD. En efecto, en 1975, el joven Steven J. Sasson (1950) empleó un CCD de Fairchild de 100×100 pixel y un grabador de casetes para montar una cámara que registraba imágenes. Cada imagen tardaba 23 segundos en ser grabada y aquel hito pudo haber sido el comienzo de algo mayor, sin embargo, no despertó el suficiente interés de Kodak. En cambio Sony abrió una decidida línea de trabajo y presento en 1981 un prototipo llamado Mavica (Magnetic Video Camera), también basado en CCD, donde una cámara fotográfica entregaba una señal de vídeo que era grabada en un disquete de 2 pulgadas conocido como Mavipak y más tarde rebautizado como Video Floppy Disk.

A lo largo de los ’80 fueron apareciendo videocámaras que disminuían su tamaño a la vez que integraban en un mismo elemento la unidad de grabación con la de captura. De esta forma hablamos de cámaras autocontenidas o Camcorder que operaban sobre el hombro del usuario. Una vez más fue Sony con su legendaria Betamovie BMC-100P (1983) y JVC con la icónica GR-C1 (1984) -usada por Marty McFly en la película Regreso al Futuro– eran quién marcaban tendencia sobre el resto de competidores del mercado doméstico. Es importante destacar que ambas cámaras seguían basadas en un tubo de vacío similar al vidicón para la captación de la imagen.

Fue en el año 1984 cuando Kodak, en un intento de hacerse un hueco en el creciente mercado de las cámaras de vídeo y dar continuidad a sus éxitos en el mundo del Super 8, presentó la Kodak Vision Series 2000. Ésta cámara fue diseñada y fabricada en Japón por Matsushita y nos recuerda que, a pesar de los grandes productos que allí se hacen, hay veces que la estética y usabilidad difiere de los estándares occidentales. Este comentario tiene que ver con el extraño repositorio o cradle -con aspecto de reproductor de video- donde era necesario introducir la cámara para poder conectarla a una televisión y así ver el vídeo. Rarezas aparte, esta cámara presentaba el novedoso sistema de almacenamiento en videocasetes de 8mm y estaba basada en CCD. Al año siguiente todo cambiaría con el lanzamiento de la Sony Handycam Video 8 CCD-M8u. Su portabilidad la convirtió en la primera cámara de mano pero seguía necesitando un reproductor externo para visualizar el material grabado. Empleaba CCDs y los mismos casetes de 8mm antes citados a los que Sony denominó Video 8. A partir de este producto se produjo una evolución en las capacidades de las videocámaras, en especial la posibilidad de reproducir vídeo, el uso de CCDs de mayor resolución y la grabación en sistemas Hi8 y S-VHS. El gran salto en el mundo domestico llegaría en 1995 con el sistema MiniDV y la plena digitalización de la captación del vídeo, su procesado y grabación.

ColecciónFotografía digital y Kodak (2) | Polaroid, la fotografía instantanea y Kodak (y 3)

 

La Impresora Láser

enero 24, 2020 on 7:44 pm | In academia, colección, hist. informática | No Comments

Irene García Fierro | He escrito esta presentación porque creo que la impresora láser es muy útil y porque me gusta mucho imprimir dibujos y textos. También quiero que conozcáis a su inventor, Gary Starkweather y lo importante que han sido los inventos de Xerox y, por supuesto, para que veáis como funciona una impresora.

Haz click para descargar la presentación

Aquí podéis visitar el espacio de la galería donde voy colocando más presentaciones

Walkman de Sony, un hito de la cultura pop

noviembre 11, 2019 on 6:31 pm | In colección, hist. sonido y música electrónica | No Comments

Adolfo García Yagüe | Se han cumplido 40 años del lanzamiento del reproductor de casetes TPS-L2 de Sony, también conocido como Walkman. No pretendo exagerar al afirmar que aquel acontecimiento significó el punto de partida de los gadgets móviles. Aunque desde hacía años existían dispositivos portátiles de comunicaciones de uso profesional, como el Handie-Talkie o el Pageboy, ambos de Motorola, y ya existían receptores de radio AM/FM, magnetófonos, tomavistas e incluso televisiones móviles, el Walkman supuso un punto de inflexión al ofrecernos la libertad de escuchar lo que deseáramos mientras nos movíamos. Aquella fue la principal motivación de sus creadores, entre los que destacan los fundadores de Sony, Masaru Ibuka (1908-1997) y Akio Morita (1921-1999), y el resposable de la división de grabadores de casete, Kozo Ohsone (1933). Sony logró así conectar con una nueva generación de jóvenes gracias a la calidad del sonido de este reproductor de casetes, su tamaño y consumo eléctrico, además de su atractivo diseño y vistosos auriculares. Por las razones anteriores el Walkman de Sony es considerado un hito de la cultura pop.

Es importante recordar que, desde principios de los `70, Sony dominaba el mercado de los grabadores portátiles y dictáfonos casete con sus equipos TC-40, TC-50 y TC-55, de tamaño y apariencia similar al Walkman. Esta serie de equipos fueron la base mecánica del posterior TPS-L2 al que dotaron de sonido estereofónico a costa de prescindir de la posibilidad de grabación pero manteniendo parte del circuito electrónico de entrada de audio y el micrófono embebido. ¿Qué contradicción no? Así es, pero en aquellos años se pensaba que el Walkman fuese utilizado por dos oyentes (dispone de dos jacks para auriculares) y que ambos pudiesen comunicarse entre sí sin dejar de escuchar música. Para este fin incorporaba el botón Hotline. También, utilizado este botón, el Walkman podía ser un pseudo karaoke al superponer la voz del usuario al audio que estaba sonando.

El hecho es que aquel reproductor -y un sinfín de imitaciones- no tardó en ocupar un espacio entre la indumentaria y equipaje cotidiano de millones de melómanos de los años 80. Por fin existía un dispositivo electrónico con el que llenar horas de entretenimiento y así abstraerse de lo que nos rodeaba… Por eso era común caminar con él en la cintura, refugiarte en la tranquilidad de tu cama, viajar en transporte público o salir a hacer jogging. Además, las económicas cintas de casete, su robustez y su flexibilidad para poder grabar en ellas lo que quisiéramos, hizo que este sistema fuese la forma ideal de escuchar la música que realmente nos apetecía. Aquellas cintas también permitieron la difusión de géneros musicales underground que nacían en aquellos años y que, de otra forma, no habrían llegado hasta los oídos de miles de jóvenes.

Sorprende comprobar como aquellas modestas cintas de casete de audio analógico y sus reproductores consiguieron sobrevivir a la digitalización ofrecida por el Compact Disc (principios de los ‘80) y el reproductor Discman (1984), o el DAT (1987). Personalmente, recuerdo que, a mediados de los ´90, aún seguía disfrutando de música gracias al Walkman y no se veía como algo nostálgico o vintage. Como he comentado, los soportes digitales como el citado Compact Disc, el DAT (Digital Audio Tape), MiniDisc y DCC (Digital Compact Cassette) no acabaron con el casete como medio preferido para escuchar música mientras nos movíamos. Fue Internet y plataformas como Napster, junto al algoritmo de compresión MP3, con el que se lograba bajar el tamaño de un fichero de audio digital, cuando realmente se destronó a la cinta de casete.

Aunque el MiniDisc ya empleaba el algoritmo compresión ATRAC (Adaptive Transform Acoustic Coding) propietario de Sony, y el DCC de Philips y Matsushita usaba PASC (Precision Adaptive Sub-band Coding), también propietario, no fue hasta la llegada del MP3 (MPEG-1 Audio Layer 3) cuando todo cambió. Esta técnica de compresión fue inventada en el Instituto Fraunhofer por Karlheinz Brandenburg (1954) para acompañar a la compresión de video MPEG (Moving Picture Experts Group). Los trabajos de Brandenburg en algoritmos de compresión de sonido arrancan en 1982 pero no es hasta 1995 cuando se puede se hablar de MP3 y un modelo de royalties más flexible que en ATRAC y PASC. Esto ha sido así hasta que a principios del año pasado expiraron las patentes que regulaban el uso de MP3.

Así, la codificación digital de la música y su posterior compresión, abrió la puerta a una nueva generación de reproductores basados en memorias tipo flash donde era posible almacenar los ficheros de audio MP3. Es en 1998 cuando verá la luz el legendario reproductor Rió PMP300 de Diamond Multimedia, casi dos décadas después del afamado reproductor de Sony…

Para recordar el impacto del veterano Walkman, Sony comercializará dentro de unos días una nueva versión conmemorativa… y con capacidades MP3…

Colección | Primeros pasos del fonógrafo Edison en España | Re-inventando la grabación en vinilo… | Grabación Magnética

HarmonyOS y los Sistemas Operativos Móviles

agosto 16, 2019 on 10:48 am | In colección, copyleft, open source, hist. informática, hist. telecomunicaciones, m2m, iot | 2 Comments

Adolfo García Yagüe | Bueno, bueno… pues parece que al final el nuevo sistema operativo de Huawei no será una distribución basada en Android o Linux. Por lo visto está construido alrededor de un microkernel (lo cual le aleja de estos) y, además, Huawei ha dado a entender que ya lo tenía desarrollado para sus sistemas embebidos e IoT y “solo” había que adaptarlo al mundo Smartphone. Originalmente se llamaba HongmengOS y, tras su apresurado lanzamiento, se llamará HarmonyOS. En todo caso, se espera que su adopción en los teléfonos de Huawei sea gradual y dependerá de cómo se desarrolle el conflicto entre EE.UU. y China que, evidentemente, no beneficia a ambas empresas ni a sus usuarios. Por eso es prematuro vaticinar cuál será su éxito.

De lo que no cabe ninguna duda es que no hay que subestimar a Huawei, y mucho menos a China. Tampoco hay que minusvalorar la arquitectura y diseño de HarmonyOS ya que, al menos sobre el papel, es muy potente y se ha concebido para cualquier dispositivo, incluidos vehículos y electrodomésticos. De hecho, desde hace algún tiempo, Google comenta la hipotética jubilación de Android a favor de FuchsiaOS, este último también se plantea como un sistema operativo universal.

Volviendo a Huawei y HarmonyOS, parece evidente que éste se las tendrá que ingeniar y contar con un módulo de emulación que le permita ejecutar la mayoría de las Apps de Android. Esto solo será un paliativo porque, en el medio plazo, uno de los grandes retos, será ganarse el apoyo de los desarrolladores y la industria para ser totalmente independiente de Google. Sin esta característica no creo que llegue muy lejos aunque su arquitectura y potencia sean fabulosos. En este sentido Huawei ya anunciado que HarmonyOS será Open Source y que cualquiera tendrá acceso al código. Dicho esto habrá que ver que entiende este fabricante por Open Source y cuál es su capacidad de persuasión para captar la atención de otros fabricantes y desarrolladores. No obstante es una buena noticia y es la mejor forma de desactivar cualquier suspicacia sobre la seguridad o el control “gubernamental” del teléfono.

Si en el hardware hemos asistido a una evolución casi uniforme, en el software hemos conocido unas cuantas iniciativas que han condenado al olvido a algún fabricante. Hace bien poco el propio Bill Gates recordaba que su mayor fracaso ha sido la movilidad, y eso que Microsoft lo lleva intentando desde 1997 con su Windows CE y antes, en 1993, con su Windows Pen. Desde entonces esta compañía se ha empeñado en convencernos de que la movilidad era una versión para pantalla pequeña del Windows de escritorio (teléfono, acceso menús, navegación, configuración). Hasta que no aparecieron los primeros Nokia Lumia, allá por el 2011, no entraron en razón y ya era demasiado tarde.

A Nokia y a Ericsson les pasó algo parecido. Sus reflejos funcionaron muy bien cuando se hicieron en 1999 con EPOC. Este sistema operativo fue desarrollado por los británicos de Psion, otro histórico. La arquitectura de EPOC permitía abstraerse fácilmente de un determinado hardware y la comunicación de procesos era sencilla y modular. Nada que ver con los anteriores monolitos software. El Ericsson R380 fue el primer teléfono basado en la versión de 32 bits de EPOC, siendo este renombrado y popularizado bajo el nombre de Symbian. A partir de aquí fueron apareciendo numerosos teléfonos inteligentes basados en este sistema operativo que, en la mayoría de los casos, estaban inspirados en un entorno gráfico similar a una PDA. Symbian compartió época con PalmOS, BlackBerry OS y Windows Mobile. De aquel momento, quizás el más rupturista, fue el DangerOS donde ya se aprecian algunos detalles que luego veríamos en Android. Otro que supuso un cambio fue el LG Prada y su pantalla táctil capacitiva, pensada para ser usada solo con los dedos de la mano. En cualquier caso el Danger Hiptop y el LG Prada fueron teléfonos que tuvieron poca repercusión comercial.

Eran años donde los fabricantes apenas arañaban cuota a Nokia o a RIM con sus Blackberry. Nokia tenía la potencia y calidad para inundarnos de teléfonos, sin importar en que gama compitieran: alta, media o baja. Por su parte, Blackberry supo detectar la importancia del correo electrónico para las empresas. RIM venía del mundo de los buscapersonas bidireccionales. Este mercado se inició hacia mediados de la década de los ´90 por la venerable Motorola y la apuesta de RIM fue usar Mobitex, una red radio sencilla y económica, para que los Operadores prestaran este servicio. Eran tiempos donde el uso del correo electrónico en las empresas empezó a ser una revolución y RIM tuvo clara la visión de crear un dispositivo que, en lugar de presentar los escuetos mensajes de busca, sirviese para recibir y contestar los correos electrónicos de la organización. Además, como era algo empresarial, ya se consideró la importancia de la seguridad del dispositivo y, si se deseaba, la Blackberry podía encriptar toda la información en ella contenida.

Así las cosas, llegó Apple y su cuidada capacidad y experiencia para construir un hardware tan bueno o mejor que el de Nokia. Además, desde hacía unos años, Apple gozaba del éxito de iTunes y su iPod lo que le permitía tener claras las ideas: la creación de un ecosistema. No se trataba solamente de hacer un buen teléfono, había que crear una plataforma (hoy lo llamamos nube) donde vender aplicaciones y guardar datos… La idea no era totalmente nueva y hay antecedentes de cosas parecidas, incluso en los tiempos de WAP (Wireless Application Protocol) los Operadores de Telecomunicaciones lo intentaron (e-moción de Telefónica o Conect@ de Airtel) pero nadie como Apple supo darle forma.

La historia puede seguir con Android y su marketplace controlado por Google. Lo importante es que a lo largo de estos años numerosos sistemas operativos vagan en el limbo de la obsolescencia y, aunque algunos sigan en activo, pasan desapercibidos: FirefoxOS, Ubutu para teléfonos, MeeGo, GEOS, Maemo, Tizen… No lo olvidemos. Está por ver que pasara con HarmonyOS.

Colección | 1G o primera generación de telefonía móvil | Los Móviles

Raspberry Pi y ordenadores para crear, no solo consumir

agosto 10, 2019 on 4:42 pm | In colección, copyleft, open source, hist. informática, innovación | No Comments

Hoy, casualmente, he leído una entrevista donde Eben Upton repasa los inicios de la Raspberry Pi. En este texto recuerda que, siendo Jefe de Estudios en la Universidad de Cambridge, él y sus colegas estaban preocupados al ver como menguaban las matriculaciones de alumnos. De aquellos años también rememora como un niño de 11 años le dijo que, cuando fuese mayor, quería ser ingeniero eléctrico y, tras conversar con él, se sintió desolado al comprobar que aquel muchacho solo tenía acceso a una Wii de Nintendo. Por otra parte, en el libro Guía del Usuario de Raspberry Pi, Upton contaba la anécdota de un padre que presumía de su hijo diciendo que era “nativo digital” por configurar con increíble soltura el ordenador…

Aquellas y otras historias llevaron a Eben y a Pete Lomas -entre otros- a diseñar un ordenador económico y abierto donde aprender informática y poder cacharrear sin miedo a romperlo. Evidentemente, para que tuviera algo de éxito había que hacerlo barato y se fijaron el iluso objetivo de no superar los 35 dólares. No sorprende comprobar las dificultades que se encontraron durante todo el proceso de desarrollo y fabricación. En cambio, sí sorprende conocer como cada barrera fue sorteada con una mezcla de audacia, entusiasmo y locura. Bien claro lo dice “si hubiéramos tenido todos los conocimientos (se refiere a costes de materiales y procesos de industrialización, fechas) no nos habríamos atrevido”. Viene a recordar que cuando caminas en esa estrecha línea que separa entre conocer de algo y desconocer de otras materias, es cuando tienes posibilidades de éxito porque es cuando abordas el proyecto. Si sabes de todo y tienes en mente todos los detalles no te metes por miedo a fracasar… y si no conoces de nada -con toda probabilidad- abandonarás ante la primera dificultad.

La entrevista, aunque es del año pasado, es totalmente vigente e invita a la reflexión sobre la educación y la dedicación de tiempo a una idea que carece de aspiraciones comerciales. Quizás la parte donde habla de los nativos digitales es la más preocupante. Resulta paradójico que hoy en día, cuando más tecnología tenemos a nuestro alcance, el número de profesionales en las escuelas de informática y telecomunicaciones esté disminuyendo. Es evidente que se ha producido un cambio en como vemos y sentimos la tecnología. La electrónica, la informática y los ordenadores han dejado de ser sexy. Los más viejos pertenecemos a una generación donde los ordenadores eran sinónimo de futuro, de progreso y bienestar. Poco nos importaba pensar que podríamos conseguir un buen trabajo, lo que nos “movía” era creer que podíamos cambiar el mundo y sentirnos especiales entre nuestros amigos. En la actualidad no sabría decir como un joven percibe la informática y las telecomunicaciones pero el exceso de etiquetas que hay a su alrededor es abrumador y no me extraña huyan espantados: Transformación Digital, Big Data y Ciencia de Datos, Industria 4.0, Inteligencia Artificial, 5G, Ciberseguridad, IoT, Ordenadores Cuánticos, Robots, Coches Autónomos, etc.

Desde luego, el hecho de disponer actualmente de ordenadores, teléfonos inteligentes y sistemas operativos tan sofisticados y herméticos no ayuda. Ahora resulta difícil, casi imposible, entender cómo funciona un dispositivo o sistema operativo. No digamos si queremos “toquetearlo” o repararlo. En este sentido Epton Upton nos recuerda que los ordenadores de antaño estaban diseñados para crear, mientras que los actuales solo sirven para consumir…

5G y lo que hemos vivido

junio 8, 2019 on 7:25 pm | In colección, hist. telecomunicaciones | No Comments

Hace unos días, Andrea Donà, responsable de redes de Vodafone UK, afirmaba en una entrevista que 5G es la tecnología definitiva y daba a entender que tras esta revolución no se sucederían más generaciones de móviles.

Con toda seguridad, la próxima aparición y desarrollo de 5G transformará las redes inalámbricas como las conocemos. Es probable que su arquitectura, al ser tan modular (y virtual), pueda considerarse como definitiva ya que la actualización de alguno de sus módulos para soportar nuevos servicios, modulación o acceso radio sea menos disruptiva de lo que ha sido hasta hoy. Es decir, entre otras muchas cosas, 5G ofrece un marco sobre el que ir cambiando los diferentes módulos (software) para adaptarla a lo que tenga que venir.

También está claro que los terminales evolucionarán. Quizás no tanto como lo visto en los últimos años pero parece claro que aún hay margen para aumentar su integración con otros dispositivos de tipo wearable, bajar su tamaño, consumo de baterías, etc. Por otro lado, para los operadores es tremendamente atractivo contar con una tecnología inalámbrica que pueda garantizar anchos de banda a la medida de la aplicación: 5G puede asegurar decenas de Bytes por segundo para que miles de coches autónomos y sensores mantengan una conexión en tiempo real, a la vez puede garantizar cientos de Megabytes a los empleados de una empresa para que trabajen en una LAN entre centenares de localizaciones. Es decir, es muy probable que veamos ordenadores, portátiles o servidores, conectados a 5G. Como no, equipos de demarcación LAN-WAN como routers o puntos de acceso wi-fi.

El motivo de los párrafos anteriores no es otro que reflexionar sobre lo que hemos visto en las últimas décadas. Somos unos privilegiados por haber presenciado el nacimiento de la telefonía móvil, Internet, las redes locales, el wi-fi, Linux y tantas otras cosas. No sé lo que verán las generaciones venideras pero está claro que lo vivido en la nuestra es histórico. Por eso, esta es una de las motivaciones que me impulsó a ir reuniendo e ir preservando piezas del pasado y entregárselas “a los de futuro”. Sería muy triste -y algo injusto- que nuestros hijos y nietos piensen que siempre existió la telefonía móvil, Internet o que hacer una videoconferencia es lo más normal…

Los Móviles

junio 1, 2019 on 8:49 pm | In academia, colección, descarga textos pdf, hist. telecomunicaciones | 2 Comments

Irene García Fierro | Me llamo Irene, tengo 9 años y es la primera vez que escribo en Internet. Esta presentación la he hecho para que mis amigos del colegio conozcan cómo han cambiado los teléfonos móviles desde que se inventaron. También me he llevado estos móviles a clase para que los compañeros los conozcan.

Mis padres no me quieren regalar un móvil y me tengo con conformar con antigüedades ¡Qué rollo, yo quiero un móvil moderno!

Descargar presentación | Colección | 1G o primera generación de telefonía móvil | HarmonyOS y los Sistemas Operativos Móviles

Videoconferencia y VoIP (y 2)

febrero 25, 2019 on 7:39 pm | In colección, hist. informática, hist. telecomunicaciones, internet | No Comments

Adolfo García Yagüe | Como hemos visto en otros textos, la evolución tecnológica corre paralela en muchos campos. En los primeros años los procesos de compresión dependían de grandes circuitos integrados fabricados a medida (ASIC), más tarde este proceso reposaba sobre chips comerciales de compañías como Texas Instruments, Philips o Siemens que simplificaban enormemente el diseño de una tarjeta de codificación. Lo mismo sucedía con el 80486 y, especialmente, con la familia Pentium de Intel. Estos microprocesadores y el consiguiente software permitían procesar en tiempo real un caudal de vídeo o de audio. Todo esto desembocó en sistemas de videoconferencia que aprovechaban las capacidades de un ordenador personal y se integraban entre nuestras herramientas ofimáticas. De todas ellas, una de las más destacadas fue la que lanzó Intel en 1994: Intel ProShare. Este producto consistía en un par de tarjetas, una para capturar vídeo y la segunda para tratar el audio y la comunicación RDSI, y el software correspondiente. Intel ProShare representa un avance desde el punto de vista de integración electrónica y aprovechamiento de un PC al poner a disposición de un usuario individual las posibilidades de la videoconferencia pero, al depender de una conexión RDSI, su ámbito de empleo estaba restringido a usuarios que tenían acceso a esta.

Otro de los equipos que marca un avance en integración y en el diseño de sus formas es el Tandberg Vision 600. Esta compañía Noruega llevaba desde los años ´30 del siglo pasado comercializando equipos profesionales de audio. En 1993 lanzó al mercado su primer videoteléfono RDSI con una pantalla basada en tubo de imagen, para escritorio o de uso personal. Años más tarde presentaría el Vision 600, también dirigido a un uso personal, con pantalla LCD color de 10”, RDSI y un aspecto tremendamente elegante. A esta empresa siempre le ha caracterizado la buena calidad de sus equipos y su diseño. Ellos fueron los que desarrollaron junto con Cisco el concepto de videoconferencia inmersiva siendo adquiridos por estos en 2009.

A pesar del esfuerzo de los operadores que, en el caso de Telefónica, apenas hacían diferencia tarifaria con la línea tradicional, el uso de RDSI se limitó a empresas. Aun así la RDSI impulsó enormemente el uso de la videoconferencia frente a soluciones basadas en circuitos punto a punto como el PictureTel 4000. RDSI daba libertad al usuario y sobre todo, sentaba las bases de la interoperabilidad entre fabricantes. La clave de esta interoperabilidad era el protocolo H.320 del ITU-T. A través de este protocolo de señalización, los equipos participantes en una conversación se ponían de acuerdo sobre el códec de video (H.261) y audio (G.711, G.722 o G.728) que iban a emplear en su comunicación, ancho de banda (uno o más canales B de la RDSI), resolución de la imagen (QCIF o CIF) o los servicios suplementarios que eran capaces de realizar. Como digo, el uso de RDSI en videoconferencia fue intenso y significó que muchas empresas empezaran a instalar en la sala de reuniones un televisor convencional con un equipo de videoconferencia. Esta intensidad a favor de RDSI se daba en las comunicaciones entre sedes o empresas diferentes y, para comunicaciones entre salas de un mismo edificio, se empezaba a considerar el empleo de IP y la LAN como transporte. En este sentido merece la pena recordar que hasta 1992 no se inventó el protocolo RTP (Real Time Protocol) para proporcionar a UDP un servicio de transporte de datos con necesidad de tiempo real, como el audio y el vídeo.

Los avances conseguidos a través de la integración microelectrónica, la RDSI y el uso de la LAN son los principales ingredientes de la siguiente generación de equipos. Dejando a un lado soluciones personales como el Intel ProShare o el Tandberg Vision 600, PictureTel lanzó en 1996 el SwiftSite dirigido al mercado profesional para hacer videoconferencias entre grupos de personas. Este equipo totalmente integrado y pequeño podía ser colocado sobre una televisión en una sala de reuniones. A pesar de nacer con la intención de llevar la videoconferencia a todas las organizaciones sufrió múltiples problemas técnicos y retrasos que terminaron espantando a los usuarios. Aquello desembocaría en una grave crisis de reputación de PictureTel que coincidió con el fortalecimiento de Polycom y la presentación del ViewStation (1998). Polycom fue fundada en 1990 por Brian Hinman (ex PictureTel) y Jeffrey Rodman (ex PictureTel). Su primer producto fue el SoundStation (1992), un terminal para mantener conversaciones telefónicas en manos libres con el que lograron el reconocimiento del mercado y, hasta hoy, ser un elemento imprescindible en cualquier compañía. En 1998 se decidieron a entrar en el mercado de la videoconferencia presentando el ViewStation que era similar en aspecto al SwiftSite de PictureTel. Todo estaba autocontenido en una misma caja a excepción de un pequeño módulo (el QuadBRI) que se conectaba a cuatro RDSI para poder usar hasta 512Kbps. El éxito de este equipo fue arrollador. Este equipo se convirtió en un electrodoméstico para las organizaciones al poder ser instalado y usado por cualquiera a través de un mando a distancia similar al que usamos en casa.

A mediados de los noventa el uso de una red local, IP e Internet para mantener una comunicación multimedia era atractivo. De hecho, en 1993 se utilizó por primera vez Mbone para transmitir contenidos multimedia en Internet. Por otra parte, como vimos con Intel ProShare, el PC contaba con capacidad de proceso suficiente pero requería de un hardware especializado en trabajar con audio, vídeo y la RDSI. Sin embargo, eran tiempos en los que el PC alcanzó la mayoría de edad de su potencia gráfica gracias a las tarjetas VGA. Esta madurez se complementó con la riqueza del sonido aportada por tarjetas como la Sound Blaster. Este adaptador contaba con un sintetizador FM y con un reproductor de muestras de audio. Este módulo de audio también permitía capturar sonido de una fuente externa como un micrófono. Esta reseña la hago porque en 1995 apareció una nueva versión de Sound Blaster que permitía un funcionamiento full dúplex es decir, podía capturar sonido a la vez que era capaz de reproducir una muestra sonora… En resumen, el PC, las VGA, la Sound Blaster, el protocolo IP… Telefonía y videoconferencia por Internet.

Así es como en 1995 VocalTec, una compañía israelí, desarrollo y comercializó el primer servicio de Telefonía por Internet. Alon Cohen (1962) y Lior Haramaty (1966) desarrollaron un códec que comprimía lo suficiente la voz para aprovechar el ancho de banda de nuestra conexión a Internet de aquella época. Además desarrollaron un software que hacía de PBX o centralita para conectar a dos usuarios. Es decir, nuestro ordenador se convertía en un SoftPhone para hablar a través de VocalTec. Su modelo de negocio era sencillo y accesible para cualquiera ya que en cualquier tienda de informática podíamos comprar un software con el que teníamos minutos de conexión. Era el nacimiento de la Telefonía sobre IP, ToIP, Voz sobre IP o VoIP.

La estela iniciada por VocalTel fue seguida por numerosos fabricantes algunos, como WorldTalk, en lugar del clásico auricular de diadema y micro comercializaban un pseudo aparato telefónico que se conectaba a la Sound Blaster. En este furor destaca Connectix quien en 1996 fue un paso más allá al ofrecer servicios de videoconferencia a través de Internet. Para ello comercializaban unas cámaras conectables al puerto paralelo del ordenador, las QuickCam que, años después, fueron absorbidas por Logitech. Fueron muchos para mencionarlos todos… DigiPhone, CU-SeeMe

VoIP, ToIP y VideoIP obligaban al ITU-T a entrar en escena. Era el momento de normalizar esta tendencia para lograr la interoperabilidad entre fabricantes. Así es como nació H.323 en 1996. Este protocolo venía a resolver el uso de redes IP por parte del tráfico multimedia. Al igual que H.320 era un protocolo de señalización usado por los participantes, en H.323 estos se registraban en un servidor o gatekeeper, intercambiaban datos sobre los códec usados, acceso servicios suplementarios, plan de direcciones, etc. No era un mal protocolo pero era excesivamente complejo y su implementación cara. Se notaba que había sido concebido por gente próxima a los operadores dominantes y sus fabricantes históricos. Si uno lee sus especificaciones se da cuenta que es difícil implementarlo al contemplar todos los escenarios posibles. En resumen, poner un producto en el mercado y que este funcionaria no era cosa fácil. Aun así hubo fabricantes como Intel y Kodak que comercializaron soluciones compatibles con H.323 junto a alguna de las primeras cámaras USB. De aquel fenómeno de videoconferencia y comunicación sobre Internet destaca Microsoft NetMeeting. Evidentemente, equipos profesionales como el ViewStation de Polycom podían trabajar sobre H.323 o prometían que este se soportaría con una simple actualización de software…

Este apogeo de la VoIP para llamar a bajo coste hizo que algunos fabricantes se cuestionaran el futuro de la telefonía clásica dentro de las empresas. Tras superar y tener que demostrar que las redes conmutadas de aquel momento e IP podían garantizar el servicio de voz, no tenía mucho sentido tener dos cableados, uno para voz y otro para datos. También, el servicio de voz clásico, era pobre a la hora de ofrecer servicios como llamadas en grupo, desvíos inteligentes, buzones de voz y su consiguiente integración con aplicaciones como el correo electrónico. También, económicamente, el mercado de las centralitas empresariales era caro y se mantenía en manos de fabricantes como Northern Telecom (Nortel), Siemens, Ericsson, Alcatel y los propios operadores (Telefónica y su servicio Ibercom). En fin, era cuestión de tiempo…

Así es como aparecieron las primeras soluciones de VoIP para empresas. En el año 1996, Selsius, una anónima compañía de Texas, presentó una solución que consistía en una PBX software o SoftSwich que corría en Windows NT. A esta se conectaban unos teléfonos IP (con conexión Ethernet) de apariencia tradicional. Como decía antes, fue una tecnología que se tuvo que ganar su hueco en un mercado bastante cautivo que ponía recelos de todo tipo a la validez de la red LAN para transportar voz. En 1998 Selsius fue adquirida por Cisco.

Por lo avanzado de su tecnología Selsius desarrolló su propio protocolo de señalización en lugar esperar y adoptar H.323. Era el Skinny Call Control Protocol (SCCP). Era un protocolo mucho más ligero y muy eficiente pero, lamentablemente, giraba en la órbita de Cisco lo que limitaba su interoperabilidad con otros fabricantes. SSCP, como H.323, fueron sustituidos en 1999 por SIP (Session Initiation Protocol), un protocolo infinitamente más sencillo y más próximo a Internet y pensado para cualquier comunicación multimedia. SIP es el estándar de hoy.

Colección | Videoconferencia (1)

Videoconferencia (1)

febrero 23, 2019 on 10:34 am | In colección, hist. informática, hist. telecomunicaciones | No Comments

Adolfo García Yagüe | Desde los albores de la telefonía el uso de videoteléfonos ha despertado la imaginación de inventores y autores de ciencia ficción. El envío de imágenes para acompañarar una conversación telefónica parecía algo evidente en la revolución tecnología que el mundo vivía. Sin embargo, hasta fechas recientes, la tecnología ha ido por detrás de cualquier predicción.

Dejando a un lado los pronósticos más futuristas y los ensayos de laboratorio, para establecer un inicio real y práctico de la videoconferencia, retrocedemos en el tiempo hasta los años 60 del pasado siglo de la mano de operador AT&T y su brazo tecnológico, los Bell Labs. Ellos, con el objeto de ofrecer más servicios sobre sus redes telefónicas, desarrollaron el Picturephone. Este terminal disponía de una pantalla de 5 pulgadas e incluía una cámara capaz de captar imágenes en blanco y negro y enviar estas a través pares telefónicos, enriqueciendo así una conversación al mostrar el rostro del interlocutor. Recurría a dos hilos de cobre para transmitir video, dos hilos para recibirlo y dos hilos para cursar la voz en ambos sentidos; en total 3 pares. Para lograr hacer uso de este medio de transmisión era necesario no sobrepasar el límite de 1MHz de ancho de ancho de banda del par telefónico, razón ésta por la que cada fotograma estaba constituido por solo 250 líneas entrelazadas en lugar de las 525 del sistema NTSC. Este dispositivo no era digital es decir, la imagen se enviaba de forma analógica y en el caso de que se quisiera mantener una videoconferencia con un lugar distante, se realizaba la digitalización en las instalaciones de AT&T para llevar a cabo la posterior amplificación o regeneración en rutas de larga distancia.

Inicialmente, en 1964, con la primera versión del Picturephone, se habilitaron unos locutorios o salas de videoconferencia en las ciudades de Nueva York, Washington y Chicago donde los usuarios mantenían su comunicación. Más adelante, en 1969, en su segunda versión, el Picturephone se extendió a los despachos de altos ejecutivos. Lo elevado del precio de este servicio y sus limitaciones técnicas y operativas hicieron que este terminal se recuerde como un hito técnico pero con escasa trascendencia comercial al ir por delante de las necesidades de los clientes y del momento.

Como digo, la escasa popularidad de Picturephone tenía que ver con sus limitaciones técnicas y el coste del servicio. Eran años en los que la electrónica integrada daba sus primeros pasos y era prematuro abordar el diseño de circuitos integrados para digitalizar y procesar datos y así bajar el precio del terminal. Tampoco ayudaba el hecho de que la red telefónica estaba pensada para el envío de voz y carecía de capacidad -o ancho de banda- para el envío de imágenes en movimiento. Por esta razón, no fue hasta 1982, cuando los ingenieros volvieron a rescatar la vieja idea de la videoconferencia. Con la presentación del codificador COS211 por parte del CEPT (Conference of European Postal and Telecommunications Administrations) se ponía al mercado tras el camino acertado. Básicamente se trataba de un mecanismo de compresión digital basado en DPCM (Differential Pulse Code Modulation) que reducía el tamaño del caudal de datos a 2Mbps para una transmisión de video y, en el extremo opuesto o destinatario, se hacia el proceso contrario es decir, a partir de este tren de datos se recuperaba el video enviado. Este proceso se realizaba a una velocidad cercana al tiempo real en ambos lados de la comunicación. De esta aproximación, además del envío digital de imágenes, se podía beneficiar el almacenamiento de estas en un soporte como el diskette o disco duro. COS211 fue el predecesor de la recomendación de H.120 de ITU-T.

DPCM conseguía un factor de compresión de 60:1. A excepción de los circuitos propios de un operador (E1 en Europa y T1 en EE.UU.), en aquellos años eran pocas las líneas con capacidad de 2Mbps. Esta técnica de compresión, al igual que las posteriores, se basa en analizar matemáticamente los fotogramas que componen el caudal de vídeo e identificar aquellas regiones de la imagen que son iguales o tienen similitudes con las de otro fotograma, los datos de estas coincidencias se eliminan por lo que los citados mecanismos de compresión suelen sacrificar detalles de la imagen que, en teoría, pasan desapercibidos ante nosotros. Como podéis suponer, cualquier técnica de compresión de vídeo requiere una capacidad de procesado muy elevada y se tiene que realizar a muy alta velocidad. Por esta razón aún era una tecnología ambiciosa. No obstante, ya en 1976, el Dr. Wen-hsiung Chen (taiwanés que desarrollo su carrera profesional en EE.UU) participa en la fundación de la compañía Compression Laboratories Inc. (CLI) cuyo núcleo de negocio es la investigación y comercialización de compresores de vídeo que puedan ser utilizados en el envío de faxes y transmisiones de vídeo. Así, en los años 1982 y 1983, presentan el compresor VTS 1.5 (Video Teleconference System) que permite el envío de imágenes en movimiento sobre líneas de 1,544Mbps (capacidad de un circuito T1) e imágenes fijas a un caudal del 56Kbps. Aquel desarrollo, como su modelo de comercialización, hizo que CLI se convirtiera en el líder absoluto en la comercialización de compresores de vídeo entre las empresas que vendían servicios como la transmisión de imágenes a través de satélite. En 1984, con el VTS 1.5E, presentan mejoras sustanciales en el ratio de compresión mediante la técnica Differential Transform Coding (DXC). Este códec permite generar caudales de video desde 768Kbps (117:1) hasta 1.544Mbps.

El año 1984 sería un año decisivo. Dentro de este mercado tan específico inició su andadura PicTel, una empresa formada por Brian L. Hinman (1961) y Jeffrey G. Bernstein (1961), estudiantes del MIT. Ellos, junto a su profesor David Staelin (1938-2011) y el apoyo financiero de Robert Sterling, concibieron la técnica de compresión MCT (Motion Compensated Transform) y comercializaron el códec C-2000 que entregaba un caudal de video comprimido de 224Kbps. En los primeros años emulaban el modelo de negocio de CLI ofreciendo al mercado compresores de vídeo. Así, en 1988, comercializaran el códec C-3000 que bajaba su caudal a 112Kbps mediante la técnica Hierarchical Vector Quantization (HVQ).

Pasada la primera mitad de los años ochenta aparecen soluciones que aun estando alejadas del gran público nacen con la aspiración de llegar a muchos profesionales. Dos de ellas fueron de Photophone, de Image Data Corp. y el videoteléfono Luma de Mitsubishi. Ambas soluciones trabajan sobre una línea telefónica común y, sobre esta, enviaban imágenes fijas en blanco y negro. En el caso del Photophone nos encontramos con una máquina basada en el Intel 80186 y arquitectura de bus ISA, pantalla integrada en blanco y negro de 8” ½, un sistema operativo específico para captar y digitalizar imágenes y un modem para trasmitirlas. Como apoyo dispone una novedosa unidad de 3” ½ donde podemos almacenar las imágenes a enviar o las recibidas. Este equipo, a pesar de no ser considerado como un equipo de videoconferencia, puede ser empleado como tal al complementarse con un teléfono convencional y captar imágenes mediante una videocámara. Más cercano a un sistema de videoconferencia era el Luma. Aquí estamos frente a un teléfono con una cámara y micropantalla incluidos (basada en tubo de imagen) que permite el intercambio de imágenes fijas con nuestro interlocutor. Este invento también fue un hito pero lo elevado de su precio y su pantalla tan minúscula (3 pulgadas) hacían de él un capricho del que se podía prescindir. Una nueva versión del Luma fue VisiTel. Este fue presentado en 1988 e intentaba llegar a más gente con un diseño más económico prescindiendo del teléfono y ampliando el tamaño de su pantalla hasta las 4 pulgadas y media. También se basaba en el envío de imágenes fijas en blanco y negro.

Tras los videoteléfonos de Mitsubishi y aplicaciones como la del Photophone empezaba a florecer un mercado, el de la videoconferencia profesional, que demandaba soluciones que permitiera a un grupo de profesionales mantener una comunicación remota de calidad y, además, intercambiar documentos gráficos. Esta tendencia fue detectada por PicTel quien cambió su nombre por el de PictureTel y se reorientó para ofrecer al mercado una solución de videoconferencia totalmente completa: el V-2100 (1988) y V-3100 (1989). Ambos se apoyaban en los códec C-2000 y C-3000 respectivamente. Mientras CLI seguía apostando por sus códec/decodec Rembrandt (año 1987) y Rembrandt II (1990), PictureTel suministraba el mastodóntico códec junto a una cámara de vídeo y un panel de control que simplificaba enormemente el establecimiento y desarrollo de una comunicación por vídeo.

En la siguiente década, en 1991, apareció el PictureTel 4000. En el bus de este equipo se insertaban tarjetas especializadas en la captura de vídeo, audio, comunicaciones y tratamiento/compresión del vídeo donde destaca el uso de grandes chips ASIC (Application-specific integrated circuit) de la firma LSI Logic. En pocos meses este equipo se convirtió en el estándar del mercado. El PictureTel 4000 estaba pensado para aprovechar circuitos dedicados a través de su interfaz V.35 sobre el que era posible trabajar con diferentes caudales que iban de los 56Kbps hasta 768Kbps según el estándar Px64 del ITU-T. Así mismo se introducía el algoritmo propietario IDEC (Integrated Dynamic Echo Cancellation) para la correcta cancelación de ecos de audio mientras se mantenía una videoconferencia.

Al año siguiente AT&T retomó su viejo anhelo con la presentación del VideoPhone 2500. Este era un videoteléfono que trabajaba sobre líneas convencionales e incluía una cámara y pantalla LCD a color de 3,3 pulgadas con la que era posible mantener una vídeo con imágenes en movimiento. El códec de este equipo se lo confió a CLI pero, mientras esto sucedía, no ocultaba su acuerdo con PictureTel para desarrollar servicios de videoconferencia profesional. El VideoPhone 2500 fue un éxito relativo. Su precio de 1500 dólares seguía siendo caro para una economía familiar que, perfectamente, podía prescindir de la videoconferencia. No así el profesional que con un PictureTel 4000 podía ahorrarse importantes costes de desplazamiento y la movilización de equipos de trabajo.

Mientras el PictureTel 4000 se extendía entre grandes compañías y el AT&T VideoPhone 2500 intentaba hacerse un hueco en hogares y pequeñas oficinas, el mundo de las comunicaciones empezaba a cambiar. Desde los años ochenta se venía hablando de la futura Red de Servicios Integrados (RDSI). Con ella se digitalizaba el terminal del abonado y sobre su bucle nos llegaban dos canales B de 64Kbps para datos y un canal D de 16Kbps para cursar mensajes con los cuales se señalizaba las características de un servicio RDSI. Comparativamente hablado, la RDSI estaba a años luz de la telefonía tradicional. A través de la RDSI el operador se convertía en el centro de la red y a través del bucle de cobre nos prestaba servicios de vídeo, telefonía, audioconferencias entre grupos de usuarios, identificación del número llamante, acceso a sistemas telemáticos, etc. Aunque el abonado normal apenas se enteró ni lo valoró, la RDSI fue un éxito entre empresas de todo tipo. En la especificación de la RDSI ya se contemplaba la futura Red Digital de Servicios Integrados de Banda Ancha (RDSI-BA), o lo que sería ATM.

Colección| Videoconferencia y VoIP (2)

« Página anteriorPágina siguiente »


(c) 1999-2021 Ccäpitalia.net - Se autoriza el uso según terminos Creative Commons BY-NC-SA
Powered by WordPress