
I. Introduction 

A Symbolic Analysis of Relay 
and Switching Circuits· 

Claude E. Shannon·· 

In the control and protective circuits of complex electrical systems it is frequently necessary 
to make intricate interconnections of relay contacts and switches. Examples of these circuits 
occur in automatic telephone exchanges, industrial motor-control equipment, and in almost any 
circuits designed to perform complex operations automatically. In this paper a mathematical 
analysis of certain of the properties of such networks will be made. Particular attention will be 
given to the problem of network synthesis. Given certain characteristics, it is required to find a 
circuit incorporating these characteristics. The solution of this type of problem is not unique 
and methods of finding those particular circuits requiring the least number of relay contacts and 
switch blades will be studied. Methods will also be described for finding any number of 
circuits equivalent to a given circuit in all operating characteristics. It will be shown that 
several of the well-known theorems on impedance networks have roughly analogous theorems 
in relay circuits. Notable among these are the delta-wye and star-mesh transformations, and the 
duality theorem. 

The method of attack on these problems may be described briefly as follows: any circuit is 
represented by a set of equations, the terms of the equations corresponding to the various relays 
and switches in the circuit. A calculus is developed for manipulating these equations by simple 
mathematical processes, most of which are similar to ordinary algebraic algorisms. This 
calculus is shown to be exactly analogous to the calculus of propositions used in the symbolic 
study of logic. For the synthesis problem the desired characteristics are first written as a system 
of equations, and the equations are then manipulated into the form representing the simplest 
circuit. The circuit may then be immediately drawn from the equations. By this method it is 
always possible to find the simplest circuit containing only series and parallel connections, and 
in some cases the simplest circuit containing any type of connection. 

Our notation is taken chiefly from symbolic logic. Of the many systems in common use we 
have chosen the one which seems simplest and most suggestive for our interpretation. Some of 
our phraseology, such as node, mesh, delta, wye, etc., is borrowed from ordinary network 
theory for simple concepts in switching circuits. 
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II. Series-Parallel Two-Terminal Circuits 

Fundamental Definitions and Postulates 

We shall limit our treatment of circuits containing only relay contacts and switches, and 
therefore at any given time the circuit between any two tenninals must be either open (infinite 
impedance) or closed (zero impedance). Let us associate a symbol X ab or more simply X, with 
the tenninals a and b. This variable, a function of time, will be called the hindrance of the 
two-tenninal circuit a -b. The symbol 0 (zero) will be used to represent the hindrance of a 
closed circuit, and the symbol 1 (unity) to represent the hindrance of an open circuit. Thus 
when the circuit a - b is open X ab = I and when closed X ab = O. Two hindrances X ab and 
X cd will be said to be equal if whenever the circuit a - b is open, the circuit c - d is open, and 
whenever a - b is closed, c -d is closed. Now let the symbol + (plus) be defined to mean the 
series connection of the two-terminal circuits whose hindrances are added together. Thus 
X ab + X cd is the hindrance of the circuit a - d when band c are connected together. Similarly 
the product of two hindrances X ab • X cd or more briefly X ab X cd will be defined to mean the 
hindrance of the circuit formed by connecting the circuits a - band c - d in parallel. A relay 
contact or switch will be represented in a circuit by the symbol in Figure I, the letter being the 
corresponding hindrance function. Figure 2 shows the interpretation of the plus sign and 
Figure 3 the multiplication sign. This choice of symbols makes the manipulation of hindrances 
very similar to ordinary numerical algebra. 

xab 
a ---0 o--b 

Figure 1 (left). Symbol for hindrance 
function 

--0 X <>--<l Y 0-- = --: + L 
Figure 2 (right). Interpretation of addition 

-{:}-= 
Figure 3 (middle). Interpretation of multipli-

cation 

It is evident that with the above definitions the following postulates will hold: 

Postulates 

J. a. 0·0 = 0 A closed circuit in parallel with a closed circuit is a 
closed circuit. 

h. I + I = I An open circuit in series with an open circuit is an 
open circuit. 

2. a. 1+0=0+1 = An open circuit in series with a closed circuit in either 
order (i.e., whether the open circuit is to the right or left 
of the closed circuit) is an open circuit. 

h. 0·1 = 1'0 = 0 A closed circuit in parallel with an open circuit in either 
order is a closed circuit. 

3. a. 0+0=0 A closed circuit in series with a closed circuit is a closed 
circuit. 

h. 1·1 = I An open circuit in parallel with an open circuit is an open 
circuit. 

4. At any given time either X = 0 or X = I. 
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These are sufficient to develop all the theorems which will be used in connection with 
circuits containing only series and parallel connections. The postulates are arranged in pairs to 
emphasize a duality relationship between the operations of addition and multiplication and the 
quantities zero and one. Thus if in any of the a postulates the zero's are replaced by one's and 
the multiplications by additions and vice versa, the corresponding b postulate will result. This 
fact is of great importance. It gives each theorem a dual theorem, it being necessary to prove 
only one to establish both. The only one of these postulates which differs from ordinary 
algebra is 1 b. However, this enables great simplifications in the manipulation of these 
symbols. 

Theorems 

In this section a number of theorems governing the combination of hindrances will be 
given. Inasmuch as any of the theorems may be proved by a very simple process, the proofs 
will not be given except for an illustrative example. The method of proof is that of "perfect 
induction," i.e., the verification of the theorem for all possible cases. Since by Postulate 4 each 
variable is limited to the values 0 and 1, this is a simple maUer. Some of the theorems may be 
proved more elegantly by recourse to previous theorems, but the method of perfect induction is 
so universal that it is probably to be preferred. 

X+y=y+X, (la) 

XY = YX, (lb) 

X + (Y + Z) = (X + Y) + Z , (2a) 

X(YZ) = (Xy)Z , (2b) 

X(Y + Z) = XY + XZ , (3a) 

X + YZ = (X + Y)(X + Z) , (3b) 

I·X = X, (4a) 

O+X=X, (4b) 

I+X=I, (5a) 

O'X = O. (5b) 

For example, to prove Theorem 4a, note that X is either 0 or 1. If it is 0, the theorem 
follows from Postulate 2b; if I, it follows from Postulate 3b. Theorem 4b now follows by the 
duality principle, replacing the 1 by 0 and the· by +. 

Due to the associative laws (2a and 2b) parentheses may be omitted in a sum or product of 
several terms without ambiguity. The l: and n symbols will be used as in ordinary algebra. 

The distributive law (3a) makes it possible to "multiply out" products and to factor sums. 
The dual of this theorem, (3b), however, is not true in numerical algebra. 

We shall now define a new operation to be called negation. The negative of a hindrance X 
will be written X' and is defined to be a variable which is equal to I when X equals 0 and equal 
to 0 when X equals I. If X is the hindrance of the make contacts of a relay, then X' is the 
hindrance of the break contacts of the same relay. The definition of the negative of a hindrance 
gives the following theorems: 

X + X' = I . (6a) 
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xx' = 0, 

0' = } , 
}' = 0, 

(X')' = X . 

Analogue With the Calculus of Propositions 

C. E. Shannon 

(6b) 

(7a) 

(7b) 

(8) 

We are now in a position to demonstrate the equivalence of this calculus with certain 
elementary parts of the calculus of propositions. The algebra of logic 1-3, originated by George 
Boole, is a symbolic method of investigating logical relationships. The symbols of Boolean 
algebra admit of two logical interpretations. If interpreted in terms of classes, the variables are 
not limited to the two possible values 0 and 1. This interpretation is known as the algebra of 
classes. If, however, the terms are taken to represent propositions, we have the calculus of 
propositions in which variables are limited to the values 0 and I,· as are the hindrance 
functions above. Usually the two subjects are developed simultaneously from the same set of 
postulates, except for the addition in the case of the calculus of propositions of a postulate 
equivalent to Postulate 4 above. E. V. Huntington 4 gives the following set of postulates for 
symbolic logic: 

1. The class K contains at least two distinct elements. 

2. If a and b are in the class K then a + b is in the class K. 

3. a + b = b + a. 

4. (a + b) + c = a + (b + c). 

5. a + a = a. 

6. ab + ab' = a where ab is defined as (a' + b')' . 

If we let the class K be the class consisting of the two elements 0 and 1, then these postulates 
follow from those given in the first section. Also Postulates }, 2, and 3 given there can be 
deduced from Huntington's postulates. Adding 4 and restricting our discussion to the calculus 
of propositions, it is evident that a perfect analogy exists between the calculus for switching 
circuits and this branch of symbolic logic:' The two interpretations of the symbols are shown 
in Table I. 

Due to this analogy any theorem of the calculus of propositions is also a true theorem if 
interpreted in terms of relay circuits. The remaining theorems in this section are taken directly 
from this field. 

De Morgan's theorem: 

(X+ Y+Z ... )' = X'·y'·Z' ... , 

(X·Y·Z ... )' = X' + y' + Z' + ... 

(9a) 

(9b) 

This refers only to the classical theory of the calculus of propositions. Recently some work has been done with 
logical systems in which propositions may have more Ihan two' 'truth values." 

.. This analogy may also be seen from a slightly different viewpoint. Instead of associating Xah directly with the 
circuit a -b let Xab represent the proposition that the circuit a -b is open. Then all the symbols are directly 
interpreted as propositions and the operations of addition and multiplication will be seen to represent series and 
parallel connections. 
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This theorem gives the negative of a sum or product in terms of the negatives of the summands 
or factors. It may be easily verified for two terms by substituting all possible values and then 
extended to any number n of variables by mathematical induction. 

A function of certain variables X \. X 2 ..... X n is any expression formed from the variables 
with the operations of addition. multiplication. and negation. The notation f(X \ .X 2.······ X n ) 
will be used to represent a function. Thus we might have f(X. Y.Z) = XY + X' (Y' + Z'). In 
infinitesimal calculus it is shown that any function (providing it is continuous and all 
derivatives are continuous) may be expanded in a Taylor series. A somewhat similar expansion 
is possible in the calculus of propositions. To develop the series expansion of functions first 

note the following equations: 

f(X \.X 2 .... Xn) = X \ ·fO.X 2 ... Xn) + X; ·f(0.X 2 ... Xn) • (lOa) 

These reduce to identities if we let X 1 equal either 0 or 1. In these equations the function f is 
said to be expanded about X \. The coefficients of X I and X; in lOa are functions of the (n - I) 
variables X 2 ... X n and may thus be expanded about any of these variables in the same manner. 
The additive terms in lOb also may be expanded in this manner. Expanding about X 2 we have: 

f(X I ... Xn) = X \ X dO.I.X 3 ... Xn) + X IXif(l.0,X 3 ... Xn) + 

(11a) 

f(X \ ... X II ) = [X I + X2 + f(0.0.X3 ",Xn )1'[X \ + X; + f(0.I,X 3 ... X II )]· 

[X; + X2 + fO.0.X3"'X,,)]·[X; + X; + f(l.I.X3"'X,,)], (lIb) 

Continuing this process n times we will arrive at the complete series expansion having the 
form: 

f(XI .. ·X,,) =f(l.1.1...l)X IX 2 ",Xn +f(0.1.1...I)XiX2 .. ·X" +... (l2a) 

+ f(O.O.O .. . 0)Xi X; ... X:, • 

f(X\ ... X n) = [XI + X2 +"·X" + f(O.O.O ... O)]· ... 

. [Xl + X2'" + X:, + fO. l... I)] . 

(12b) 

Table I. Analogue Between the Calculus of Propositions and the Symbolic Relay Analysis 

Symbol Interpretation in Relay Circuits 

X The circuit X 
o The circuit is closed 

The circuit is open 
X + Y The series connection of circuits X and Y 

X Y The parallel connection of circuits X and Y 

X' The circuit which is open when X is closed 
and closed when X is open 

= The circuits open and close simultaneously 

Interpretation in the Calculus of Propositions 

The proposition X 
The proposition is false 
The proposition is true 
The proposition which is true if either X or Y 

is true 
The proposition which is true if both X and Y 

are true 
The contradictory of proposition X 

Each proposition implies the other 
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By 12a, 1 is equal to the sum of the products fonned by pennuting primes on the tenns of 
X I X 2"'X n in all possible ways and giving each product a coefficient equal to the value of the 
function when that product is 1. Similarly for 12b. 

As an application of the series expansion it should be noted that if we wish to find a circuit 
representing any given function we can always expand the function by either lOa or lOb in such 
a way that any given variable appears at most twice, once as a make contact and once as a break 
contact. This is shown in Figure 4. Similarly by II any other variable need appear no more 
than four times (two make and two break contacts), etc. 

Figure 4. Expansion about one variable 

A generalization of De Morgan's theorem is represented symbolically in the following 
equation: 

(13) 

By this we mean that the negative of any function may be obtained by replacing each variable 
by its negative and interchanging the + and, symbols. Explicit and implicit parentheses will, of 
course, remain in the same places. For example, the negative of X + Y'(Z + WX') will be 
X'[y' + Z'(W' + X)]. 

Some other theorems useful in simplifying expressions are given below: 

X = X + X = X + X + X = etc. , 

X = X'X = X'X'X = etc. 

X + XY = X , 

X(X + Y) + X , 

XY + X' Z = XY + X' Z + YZ , 

(X + Y)(X' + Z) = (X + y)(X' + Z)(Y + Z) , 

Xf(X,Y,Z, ... ) = Xf( I ,Y,Z, ... ) , 

X + f(X,Y,Z, ... ) = X + I(O,Y,Z, ... ) , 

X'f(X,Y,Z, ... ) = X'f(O,Y,Z, ... ) , 

X' + f(X,Y,Z, ... ) = X' + 1(1 ,Y,Z, . .. ) 

All of these theorems may be proved by the method of perfect induction. 

(l4a) 

(14b) 

(l5a) 

(15b) 

(l6a) 

( 16b) 

(l7a) 

( 17b) 

(l8a) 

(18b) 

Any expression fonned with the operations of addition, multiplication, and negation 
represents explicitly a circuit containing only series and parallel connections. Such a circuit 
will be called a series-parallel circuit. Each letter in an expression of this sort represents a 
make or break relay contact, or a switch blade and contact. To find the circuit requiring the 
least number of contacts, it is therefore necessary to manipulate the expression into the fonn in 
which the least number of letters appear. The theorems given above are always sufficient to do 
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this. A little practice in the manipulation of these symbols is all that is required. Fortunately 
most of the theorems are exactly the same as those of numerical algebra - the associative, 
commutative, and distributive laws of algebra hold here. The writer has found Theorems 3, 6, 
9, 14, 15, 16a, 17, and 18 to be especially useful in the simplification of complex expressions. 

Frequently a function may be written in several ways, each requiring the same minimum 
number of elements. In such a case the choice of circuit may be made arbitrarily from among 
these, or from other considerations. 

Figure 5. Circuit to be simpllRed 

As an example of the simplification of expressions consider the circuit shown in Figure 5. 
The hindrance function X ah for this circuit will be: 

X ah = W + w' (X + Y) + (X + Z)(S + W' + Z)(Z' + Y + S'V) 

= W + X + Y + (X + Z)(S + 1 + Z)(Z' + Y + S'V) 

= W + X + Y + Z(Z' + S'V) . 

These reductions were made with 17b using first W, then X and Y as the "X" of 17b. Now 
multiplying out: 

Xab = W+X+Y+ZZ'+ZS'V 

=W+X+Y+ZS'V. 

The circuit corresponding to this expression is shown in Figure 6. Note the large reduction 
in the number of elements. 

z 

a-oW~xo-oY~~3-b 
Figure 6. Simpliflcition of flgure 5 

It is convenient in drawing circuits to label a relay with the same letter as the hindrance of 
make contacts of the relay. Thus if a relay is connected to a source of voltage through a 
network whose hindrance function is X, the relay and any make contacts on it would be labeled 
X. Break contacts would be labeled X'. This assumes that the relay operates instantly and that 
the make contacts close and the break contacts open simultaneously. Cases in which there is a 
time delay will be treated later. 

III. Multi-Terminal and Non-Series-Parallel Circuits 

Equivalence of n-Terminal Networks 

The usual relay control circuit will take the form of Figure 7, where X I' X 2,"'X n are relays 
or other devices controlled by the circuit and N is a network of relay contacts and switches. It 
is desirable to find transformations that may be applied to N which will keep the operation of 



478 C. E. Shannon 

all the relays X I , ... X n the same. So far we have only considered transformations which may 
be applied to a two-tenninal network keeping the operation of one relay in series with this 
network the same. To this end we define equivalence of n-terminal networks as follows. 
Definition: Two n-tenninal networks M and N will be said to be equivalent with respect to these 
n tenninals if and only if Xjk = f jk ; j,k = 1,2,3 .... n, where Xjk is the hindrance of N 
(considered as a two-tenninal network) between tenninalsj and k, and fjk is that for M between 
the corresponding tenninals. Under this definition the equivalences of the preceding sections 
were with respect to two tenninals. 

a 

Figure 7. General constant-voltage relay 
circuit 

Star-Mesh and Delta-Wye Transformations 

As in ordinary network theory there exist star-to-mesh and delta-to-wye transformations. In 
impedance circuits these transfonnations, if they exist, are unique. In hindrance networks the 
transfonnations always exist and are not unique. Those given here are the simplest in that they 
require the least number of elements. The delta-to-wye transfonnation is shown in Figure 8. 
These two networks are equivalent with respect to the three tenninals a ,b, and c, since by 
distributive law X ab = R(S + T) = RS + RT and similarly for the other pairs of terminals 
a-candh-c. 

b 

! 
R'S 

R'TA,S']' 
a/ "c 

Figure 8. Delta-wye transformation 

The wye-to-delta transfonnation is shown in Figure 9. This follows from the fact that 
X ab = R + S = (R + S)· (R + T + T + S), etc. An n-point star also has a mesh equivalent 
with the central junction point eliminated. This is fanned exactly as in the simple three-point 
star, by connecting each pair of tenninals of the mesh through a hindrance which is the sum of 
the corresponding anns of the star. This may be proved by mathematical induction. We have 
shown it to be true for n = 3. Now assuming it true for n - I, we shall prove it for n. 
Suppose we construct a mesh circuit from the given n-point star according to this method. 
Each comer of the mesh will be an (n - I )-point star and since we have assumed the theorem 
true for n - 1 we may replace the nth comer by its mesh equivalent. If Y OJ was the hindrance 
of the original star from the central node 0 to the point j, then the reduced mesh will have the 
hindrance (Y OS + Y or )' (Y OS + Yon + Y Or + YOn) connecting nodes rand s. But this reduces 
to Y Os Y Or which is the correct value, since the original n-point star with the nth ann deleted 
becomes an (n - 1 )-point star and by our assumption may be replaced by a mesh having this 
hindrance connecting nodes rand s. Therefore the two networks are equivalent with respect to 
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the first n - I tenninals. By eliminating other nodes than the nth, or by symmetry, the 
equivalence with respect to all n tenninals is demonstrated. 

Figure 9. Wye-delta transformation 

Hindrance Function of a Non-Series-Parallel Network 

The methods of Part II were not sufficient to handle circuits which contained connections 
other than those of a series-parallel type. The "bridge" of Figure 10, for example, is a non
series-parallel network. These networks will be treated by first reducing to an equivalent 
series-parallel circuit. Three methods have been developed for finding the equivalent of a 
network such as the bridge. 

_-<"1'5>--_ 
u~v 

d 

Figure 10. Non-serles-peranel circuit 

The first is the obvious method of applying the transfonnations until the network is of the 
series-parallel type and then writing the hindrance function by inspection. This process is 
exactly the same as is used in simplifying the complex impedance networks. To apply this to 
the circuit of Figure 10, first we may eliminate the node c, by applying the star-to-mesh 
transfonnation to the star a - c, b - c, d - c. This gives the network of Figure II. The 
hindrance function may be written down from inspection for this network: 

Xah = (R + S)[U(R + T) + V(T + S)] . 

This may be written as 

X ah = RU + SV + RTV + STU = R(U + TV) + S(V + TU) 

Figure 11. Hindrance function by me.n. of 
tran,formatlon. 

The second method of analysis is to draw all possible paths through the network between the 
points under consideration. These paths are drawn along the lines representing the component 
hindrance elements of the circuit. If anyone of these paths has zero hindrance, the required 
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function must be zero. Hence if the result is written as a product, the hindrance of each path 
will be a factor of this product. The required result may therefore be written as the product of 
the hindrances of all possible paths between the two points. Paths which touch the same point 
more than once need not be considered. In Figure 12 this method is applied to the bridge. The 
paths are shown dotted. The function is therefore given by 

Xab = (R + SHU + V)(R + T + V)(U + T + S) 

= RU + SV + RTV + UTS = R(U + TV) + S(V + TU) 

The same result is thus obtained as with the first method. 

Figure 12. Hlndr.nce function ••• product 
of .um. 

The third method is to draw all possible lines which would break the circuit between the 
points under consideration, making the lines go through the hindrances of the circuit. The 
result is written as a sum, each tenn corresponding to a certain line. These tenns are the 
products of all the hindrances on the line. The justification of the method is similar to that for 
the second method. This method is applied to the bridge in Figure 13. 

Figure 1 3. Hindr.nce function •• • sum of 
products 

This again gives for the hindrance of the network: 

Xab = RU + SV + RTV + STU = R(U + TV) + S(V + TU) 

The third method is usually the most convenient and rapid, for it gives the result directly as 
a sum. It seems much easier to handle sums than products due, no doubt, to the fact that in 
ordinary algebra we have the distributive law X (Y + Z) = XY + XZ, but not its dual 
X + YZ = (X + Y)(X + Z). It is, however, sometimes difficult to apply the third method to 
nonplanar networks (networks which cannot be drawn on a plane without crossing lines) and in 
this case one of the other two methods may be used. 

Simultaneous Equations 

In analyzing a given circuit it is convenient to divide the various variables into two classes. 
Hindrance elements which are directly controlled by a source external to the circuit under 
consideration will be called independent variables. These will include hand-operated switches, 
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contacts on external relays. etc. Relays and other devices controlled by the network will be 
called dependent variables. We shall. in general. use the earlier letters of the alphabet to 
represent independent variables and the later letters for dependent variables. In Figure 7 the 
dependent variables are X I .X 2"'X II" X k will evidently be operated if and only if X Ok == 0, 
where X Ok is the hindrance function of N between terminals 0 and k. That is, 

X k =: X Ok' k =: 1,2, ... n . 

This is a system of equations which completely define the operation of the system. The right
hand members will be known functions involving the various dependent and independent 
variables and given the starting conditions and the values of the independent variables the 
dependent variables may be computed. 

A transformation will now be described for reducing the number of elements required to 
realize a set of simultaneous equations. This transformation keeps X Ok (k == 1,2 ... n) invariant, 
but Xjk(j,k =: I ,2 ... n) may be changed, so that the new network may not be equivalent in the 
strict sense defined to the old one. The operation of all the relays will be the same, however, 
This simplification is only applicable if the X Ok functions are written as sums and certain terms 
are common to two or more equations. For example, suppose the set of equations is as follows: 

W = A + B + CW, 

X = A + B + WX , 

Y = A + CY , 

Z = EZ + F . 

This may be realized with the circuit of Figure 14, using only one A element for the three 
places where A occurs and only one B element for its two appearances. The justification is 
quite obvious. This may be indicated symbolically by drawing a vertical line after the terms 
common to the various equations, as shown below. 

W= B + CW 

X= A + WX 

y = CY 

Z = F + EZ 

~ ~ F e>-_-J"z"",_ .... 

Figure 14. EXlmple 01 reduction 01 simul
taneous equltions 
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It follows from the principle of duality that if we had defined multiplication to represent 
series connection, and addition for parallel connection, exactly the same theorems of 
manipulation would be obtained. There were two reasons for choosing the definitions given. 
First, as has been mentioned, it is easier to manipulate sums than products and the 
transformation just described can only be applied to sums (for constant-current relay circuits 
this condition is exactly reversed), and second, this choice makes the hindrance functions 
closely analogous to impedances. Under the alternative definitions they would be more similar 
to admittances, which are less commonly used. 

Sometimes the relation XY' = 0 obtains between two relays X and Y. This is true if Yean 
operate only if X is operated. This frequently occurs in what is known as a sequential system. 
In a circuit of this type the relays can only operate in a certain order or sequence, the operation 
of one relay in general "preparing" the circuit so that the next in order can operate. If X 
precedes Y in the sequence and both are constrained to remain operated until the sequence is 
finished then this condition will be fulfilled. In such a case the following equations hold and 
may sometimes be used for simplification of expressions. If XY' = 0, then 

X'Y' = y' , 

XY = X, 

X' + Y = I , 

X' + y' = X' 

X+Y=Y. 

These may be proved by adding XY' = 0 to the left-hand member or multiplying it by 
X' + Y = I, thus not changing the value. For example, to prove the first one, add XY' to 
X' y' and factor. 

Special Types of Relays and Switches 

In certain types of circuits it is necessary to preserve a definite sequential relation in the 
operation of the contacts of a relay. This is done with make-before-break (or continuity) and 
break-make (or transfer) contacts. In handling this type of circuit the simplest method seems to 
be to assume in setting up the equations that the make and break contacts operate 
simultaneously, and after all simplifications of the equations have been made and the resulting 
circuit drawn, the required type of contact sequence is found from inspection. 

Relays having a time delay in operating or deoperating may be treated similarly or by 
shifting the time axis. Thus if a relay coil is connected to a battery through a hindrance X, and 
the relay has a delay of p seconds in operating and releasing, then the hindrance function of the 
contacts of the relay will also be X, but at a time p seconds later. This may be indicated by 
writing X (t) for the hindrance in series with the relay, and X (t - p) for that of the relay 
contacts. 

There are many special types of relays and switches for particular purposes, such as the 
stepping switches and selector switches of various sorts, multiwinding relays, cross-bar 
switches, etc. The operation of all these types may be described with the words "or," "and," 
"if," "operated," and "not operated." This is a sufficient condition that they may be 
described in terms of hindrance functions with the operations of addition, multiplication, 
negation, and equality. Thus a two-winding relay might be so constructed that it is operated if 
the first or the second winding is operated (activated) and the first and the second windings are 
not operated. If the first winding is X and the second Y, the hindrance function of make 
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contacts on the relay will then be XY + X' y'. Usually, however, these special relays occur 
only at the end of a complex circuit and may be omitted entirely from the calculations to be 
added after the rest of the circuit is designed. 

Sometimes a relay X is to operate when a circuit R closes and to remain closed independent 
of R until a circuit S opens. Such a circuit is known as a lock-in circuit. Its equation is: 

X=RX+S. 

Replacing X by X' gives: 

X' = RX' + S 

or 

X = (R' + X)S' . 

In this case X is opened when R closes and remains open until S opens. 

IV. Synthesis of Networks 

Some General Theorems on Networks and Functions 

It has been shown that any function may be expanded in a series consisting of a sum of 
products. each product being of the form X I X 2 .•• X n with some permutation of primes on the 
letters, and each product having the coefficient 0 or I. Now since each of the n variables may 
or may not have a prime, there is a total of 2n different products of this form. Similarly each 
product may have the coefficient 0 or the coefficient I so there are 22n possible sums of this 

sort. Hence we have the theorem: The number of functions obtainable from n variables is 22n. 

Each of these sums will represent a different function, but some of the functions may 
actually involve fewer than n variables (that is, they are of such a form that for one or more of 
the n variables, say X ko we have identically fix, =0 = fix, = I so that under no conditions does 
the value of the function depend on the value X d. Thus for two variables. X and Y. among the 
16 functions obtained will be X,Y,X' ,Y' ,0, and 1 which do not involve both X and Y. To find 
the number of functions which actually involve all of the n variables we proceed as follows. 
Let <\l (n) be the number. Then by the theorem just given: 

22" = 1: (~J cp(k) . 
k=O 

where [zJ = n! / k! (11 - k) ! is the number of combinations of n things taken k at a time. That 

is. the total number of functions obtainable from n variables is equal to the sum of the numbers 
of those functions obtainable from each possible selection of variables from these n which 
actually involve all the variables in the selection. Solving for <I>(n) gives 

<I>(n) = 22" - :~ (Z) <I>(k) . 

By substituting for <\len - I) on the right the similar expression found by replacing n by n - I 
in this equation. then similarly substituting for <I>(n - 2) in the expression thus obtained. etc .• 
an equation may be obtained involving only cp(n). This equation may then be simplified to the 
form 
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As n increases this expression approaches its leading teon 22n asymptotically. The error in 
using only this teon for n = 5 is less than 0.01 percent. 

We shall now detennine those functions of n variables which require the most relay 
contacts to realize, and find the number of contacts required. In order to do this, it is necessary 
to define a function of two variables known as the sum modulo two or disjunct of the variables. 
This function is written X I EBX 2 and is defined by the equation: 

X I EB X 2 = X I X; + Xl X 2 . 

It is easy to show that the sum modulo two obeys the commutative, associative, and the 
distributive law with respect to multiplication, that is, 

Also 

X I EBX 2 = X 2 EBX I , 

(X I EBX 2) EBX 3 = X I EB(X 2 $X 3) , 

X I (X 2 EBX 3 ) = X I X 2 EBX I X 3 . 

(X 1EBX 2 )' = XIEBX; = X,EBX2 , 

X lEBO = XI, 

XI EB I = X~ 

Since the sum modulo two obeys the associative law, we may omit parentheses in a sum of 
several teons without ambiguity. The sum modulo two of the n variables X 1 ,X 2"'X n will for 
convenience be written: 

11 

Theorem: * The two functions of n variables which require the most elements (relay 
n n 

contacts) in a series-parallel realization are 2X k and (2Xd', each of which requires 
1 1 

(3'2n - 1 -2) elements. 

This will be proved by mathematical induction. First note that it is true for n = 2. There 
are ten functions involving two variables, namely, XY, X + Y, X'Y, X' + Y, Xy', X + y', 
X' Y', X' + y', XY' + X' Y, XY + X' Y'. All of these but the last two require two elements; 
the last two require four elements and are XEBY and (XEBy)', respectively. Thus the theorem is 
true for n = 2. Now assuming it true for n - I, we shall prove it true for n and thus complete 
the induction. Any function of n variables may be expanded about the nth variable as follows: 

f(X I ,X2 ... X II ) = f = Xllf(X I ",X II _ 1 ,I) + X~f(XI",Xn_1 ,0) . (19) 

Now the teons f(X 1 ..• X 11- 1 ' I) and I(X I ••• X 11- 1 ,0) are functions of n - I variables and if 
they individually require the most .elements for n - I variables, then f will require the most 
elements for n variables, providing there is no other method of writing f so that fewer elements 
are required. We have assumed that the most elements for n - I variables are required by 
/1- 1 n - 1 

2 X k and its negative. If we, therefore, substitute for f(X 1 ••• X n _ I ,I) the function 2 X k and 
1 1 

11-1 

for f(X I"'X n _ 1,0) the function ( 2 X k)' we find 
1 

• See the Notes to this paper. 
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n-I n-I n 

f = X n ::: X k + X: ( ::: X k)' = (:::X k )' 
I I I 

From the symmetry of this function there is no other way of expanding which will reduce the 
number of elements. If the functions are substituted in the other order we get 

n-I n-I n 

f = X n ( ::: X k )' + X~ ::: X k = :::X k • 
I I I 

This completes the proof that these functions require the most elements. 

To show that each requires (3'2n - 1 -2) elements, let the number of elements required be 
denoted by s(n). Then from (19) we get the difference equation 

s(n) = 2s(n - I) + 2, 

with s(2) = 4. This is linear, with constant coefficients, and may be solved by the usual 
methods. The solution is 

s(n) = 3'2n - 1 - 2, 

as may easily be verified by substituting in the difference equation and boundary condition. 

Note that the above only applies to a series-parallel realization. In a later section it will be 
n 

shown that the function :::X k and its negative may be realized with 4(n -I) elements using a 
I 

more general type of circuit. The function requiring the most elements using any type of circuit 
has not as yet been detennined. 

Dual Networks 

The negative of any network may be found by De Morgan's theorem, but the network must 
first be transfonned into an equivalent series-parallel circuit (unless it is already of this type). 
A theorem will be developed with which the negative of any planar two-tenninal circuit may be 
found directly. As a corollary a method of finding a constant-current circuit equivalent to a 
given constant-voltage circuit and vice versa will be given. 

Let N represent a planar network of hindrances, with the function X ab between the tenninals 
a and b which are on the outer edge of the network. For definiteness consider the network of 
Figure 15 (here the hindrances are shown merely as lines). 

Now let M represent the dual of N as found by the following process; for each contour or 
mesh of N assign a node or junction point of M. For each element of N, say X to separating the 
contours rand s there corresponds an element Xi connecting the nodes rand s of M. The area 
exterior to N is to be considered as two meshes, c and d, corresponding to nodes c and d of M. 
Thus the dual of Figure 15 is the network of Figure 16. 

MESH C <:SJ>s J" 

a U v b 

w y 

MESH d 

Figure 15 (left). PI.n.r networlc for iIIus ..... 
tion of du.lity theorem 

Figure 16 (right). Du.1 of figure 1 5 



486 C. E. Shannon 

Theorem: If M and N bear this duality relationship, then X ab = X:d . To prove this, let the 
network M be superimposed upon N, the nodes of M within the corresponding meshes of Nand 
corresponding elements crossing. For the network of Figure 15, this is shown in Figure 17 with 
N solid and M dotted. Incidentally, the easiest method of finding the dual of a network 
(whether of this type or an impedance network) is to draw the required network superimposed 
on the given network. Now, if X ab = 0, then there must be some path from a to b along the 
lines of N such that every element on this path equals zero. But this path represents a path 
across M dividing the circuit from c to d along which every element of M is one. Hence 
X cd = 1. Similarly, if X cd = 0, then X ah = I, and it follows that X ab = X;d' 

a b 

Figure 17. Superposition ef a networlc and 
its dual 

~~T a-<R ~ Y>-b 
s~ z 

w 

Figure 18. Nonp/anar networlc 

It is evident from this theorem that a negative for any planar network may be realized with 
the same number of elements as the given network. t 

In a constant-voltage relay system all the relays are in parallel across the line. To open a 
relay a series connection is opened. The general constant-voltage system is shown in 
Figure 19. In a constant-current system the relays are all in series in the line. To de-operate a 
relay it is short-circuited. The general constant-current circuit corresponding to Figure 19 is 
shown in Figure 20. If the relay Y k of Figure 20 is to be operated whenever the relay X k of 
Figure 19 is operated and not otherwise, then evidently the hindrance in parallel with Y k which 
short-circuits it must be the negative of the hindrance in series with X k which connects it across 
the voltage source. If this is true for all the relays, we shall say that the constant-current and 
constant-voltage systems are equivalent. The above theorem may be used to find equivalent 
circuits of this sort, for if we make the networks Nand M of Figures 19 and 20 duals in the 
sense described, with X k and Y k as corresponding elements, then the condition will be satisfied. 
A simple example of this is shown in Figures 21 and 22. 

Figure 19 (left). General constant-voltage 
relay circuit 

Figure 20 (right). General constant-current 
relay circuit 

t This is not in general true if the word "planar" is omitted. The nonplanar network X uh' of Figure 18, for example, 

has no negative containing only eight elements. 
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Figure 21 ('eft). Simp'e constant-vo'"ge 
system 

Synthesis of the General Symmetric Function 

Figure 22 (right). Consllnt-current system 
equlvl'ent to Rgure 21 
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It has been shown that any function represents explicitly a series-parallel circuit. The 
series-parallel realization may require more elements, however, than some other network 
representing the same function. In this section a method will be given for finding a circuit 
representing a certain type of function which in general is much more economical of elements 
than the best series-parallel circuit. This type of function is known as a symmetric function and 
appears frequently in relay circuits. 

Definition: A function of the n variables X I ,X 2.' .X" is said to be symmetric in these 
variables if any interchange of the variables leaves the function identically the same. Thus 
Xy + XZ + YZ is symmetric in the variables X, Y, and Z. Since any permutation of variables 
may be obtained by successive interchanges of two variables, a necessary and sufficient 
condition that a function be symmetric is that any interchange of two variables leaves the 
function unaltered. 

By proper selection of the variables many apparently unsymmetric functions may be made 
symmetric. For example, XY'Z + X'YZ + X'y'Z' although not symmetric in X, Y, and Z is 
symmetric in X, Y, and Z'. It is also sometimes possible to write an unsymmetric function as a 
symmetric function multiplied by a simple term or added to a simple term. In such a case the 
symmetric part may be realized with the methods to be described, and the additional term 
supplied as a series or parallel connection. 

The following theorem forms the basis of the method of design which has been developed. 

Theorem: A necessary and sufficient condition that a function be symmetric is that it may 
be specified by stating a set of numbers a I , a 2 ... a k such that if exactly a j (j = 1,2,3 ... ,) of 
the variables are zero, then the function is zero and not otherwise. This follows easily from the 
definition. The set of numbers a I, a 2 ... a k may be any set of numbers selected from the 
numbers 0 to n inclusive, where n is the number of variables in the symmetric function. For 
convenience, they will be called the a-numbers of the function. The symmetric function 
XY + XZ + YZ has the a-numbers 2 and 3. since the function is zero if just two of the variables 
are zero or if three are zero, but not if none or if one is zero. To find the a-numbers of a given 
symmetric function it is merely necessary to evaluate the function with O. 1 ... n of the variables 
zero. Those numbers for which the result is zero are the a-numbers of the function. 

Theorem: There are 2 n + I symmetric functions of n variables. This follows from the fact 
that there are n + 1 numbers. each of which may be taken or not in our selection of a-numbers. 
Two of the functions are trivial. however. namely. those in which all and one of the numbers 
are taken. These give the "functions" 0 and 1. respectively. The symmetric function of the n 
variables X 1,X2",Xn with the a-numbers al,a2 ... ak will be written Sa,a, . .a. 
(X I • X 2 •.•• , X /I)' Thus the example given would be S 23 (X, Y,Z). The circuit which has 
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been developed for realizing the general symmetric function is based on the a-numbers of the 
function and we shall now assume that they are known. 

Theorem: The sum of two given symmetric functions of the same set of variables is a 
symmetric function of these variables having for a-numbers those numbers common to the two 
given functions. Thus S 1,2,3 (X I ... X 6) + S 2,3,5 (X I ... X 6) = S 2,3 (X I .. ,X 6)' 

Theorem: The product of two given symmetric functions of the same set of variables is a 
symmetric function of these variables with all the numbers appearing in either or both of the 
given functions for a-numbers. Thus S 1.2,3 (X 1"'X 6) 'S 2,3,5 (X 1"'X 6) = S 1,2,3,5 (X 1"'X 6)' 

To prove these theorems, note that a product is zero if either factor is zero, while a sum is 
zero only if both terms are zero. 

Theorem: The negative of a symmetric function of n variables is a symmetric function of 
these variables having for a-numbers all the numbers from 0 to n inclusive which are not in the 
a-numbers of the given function. Thus S2,3,5 (X 1"'X 6) = So, I ,4,6 (X 1"'X 6)' 

Before considering the synthesis of the general symmetric function S a I a,. a. 
(X I, X 2' ... ,X n) a simple example will be given. Suppose the function S 2 (X I ,X 2 ,X 3) is to 
be realized. This means that we must construct a circuit which will be closed when any two of 
the variables X I ,X 2 ,X 3 are zero, but open if none, or one or three are zero. A circuit for this 
purpose is shown in Figure 23. This circuit may be divided into three bays, one for each 
variable, and four levels marked 0, 1, 2 and 3 at the right. The terminal b is connected to the 
levels corresponding to the a-numbers of the required function, in this case to the level marked 
2. The line coming in at a first encounters a pair of hindrances X I and X~. If X I = 0, the line 
is switched up to the level marked 1, meaning that one of the variables is zero; if not it stays at 
the same level. Next we come to hindrances X 2 and X;. If X 2 = 0, the line is switched up a 
level; if not, it stays at the same level. X 3 has a similar effect. Finally reaching the right-hand 
set of terminals, the line has been switched up to a level equal to the total number of variables 
which are zero. Since terminal b is connected to the level marked 2, the circuit a - b will be 
completed if and only if 2 of the variables are zero. If S 0,3 (X I , X 2, X 3) had been desired, 
terminal b would be connected to both levels 0 and 3. In Figure 23 certain of the elements are 
evidently superfluous. The circuit may be simplified to the form of Figure 24. 

Figure 24. Simplification of figure 23 

For the general function exactly the same method is followed. Using the general circuit for 
n variables of Figure 25, the terminal b is connected to the levels corresponding to the a-
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.... ~~n-I) 
""'2: 

.~~---~! XI X2 X3 ••••••• Xn 

Figure 25. Circuit for re.lizing the gener.1 
symmetric function SalAI ••• "",(X., X'I •..• Xn) 

489 

numbers of the desired symmetric function. In Figure 25 the hindrances are respected merely 
by lines, and the letters are omitted from the circuit, but the hindrance of each line may easily 
be seen by generalizing Figure 23. After terminal b is connected, all superfluous elements may 
be deleted. 

Figure 26. Circuit for So,I,6 (XI . • . XA) uling 
the "shifting down" procels 

In certain cases it is possible to greatly simplify the circuit by shifting the levels down. 
Suppose the function SO,3,6(X I ... X 6) is desired. Instead of continuing the circuit up to the 
sixth level, we connect the second level back down to the zero level as shown in Figure 26. 
The zero level then also becomes the third level and the sixth level. With terminal b connected 
to this level. we have realized the function with a great savings of elements. Eliminating 
unnecessary elements the circuit of Figure 27 is obtained. This device is especially useful if the 
a-numbers form an arithmetic progression. although it can sometimes be applied in other cases . 

. ~ 
XI X2 X3 X4 Xs xe 

b 

Figure 27. Simplification of Rgure 26 

II II 

The functions :::x k and ('::X k )' which were shown to require the most elements for a series 
I I 

parallel realization have very simple circuits when developed in this manner. It can be easily 
II 

shown that if 11 is even, then :::x k is the symmetric function with aU the even numbers for a
I 

/I 

numbers. if 11 is odd it has all the odd numbers for a-numbers. The function (EX k)' is, of 
I 

course, just the opposite. Using the shifting-down process the circuits are as shown in 
Figures 28 and 29. These circuits each require 4(11 - 1) elements. They will be recognized as 
the familiar circuit for controlling a light from 11 points, using (n - 2) double-pole double-throw 
switches and two single-pole double-throw switches. If at anyone of the points the position of 
the switch is changed. the total number of variables which equal zero is changed by one. so that 
if the light is on. it will be turned off and if already off. it will be turned on. 
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.. 
Figure 28. :eXt for n oddl 

1 even 

.. 
(:eXt)' for n 

1 

C. E. Shannon 

More than one symmetric function of a certain set of variables may be realized with just one 
circuit of the fonn of Figure 25, providing the different functions have no a-numbers in 
common. If there are common a-numbers the levels may be shifted down, or an extra relay 
may be added so that one circuit is still sufficient. 

The general network of Figure 25 contains n(n + 1) elements. We will show that for any 
given selection of a-numbers, at least n of the elements will be superfluous. Each number from 
1 to n - I inclusive which is not in the set of a-numbers produces two unnecessary elements; 0 
or n missing will produce one unnecessary element. However, if two of the a-numbers differ 
by only one, then two elements will be superfluous. If more than two of the a-numbers are 
adjacent, or if two or more adjacent numbers are missing, then more than one element apiece 
will be superfluous. It is evident then that the worst case will be that in which the a-numbers 
are all the odd numbers or all the even numbers from 0 to n. In each of these cases it is easily 
seen that n of the elements will be superfluous. In these cases the shifting down process may be 
used if n > 2 so that the maximum of n 2 elements will be needed only for the four particular 
functions X, X', XE9Y, and (X$Y)'. 

/'V'V -----~ 
a ~------A:\. b 

XI X2 X3······· Xn-I Xn 

.. .. 
Figure 29. (:E:Xt ) for n evenl (:eXt)' for n 

1 odd 1 

Equations From Given Operating Characteristics 

In general, there is a certain set of independent variables A, B, C ... which may be switches, 
externally operated or protective relays. There is also a set of dependent variables x, y, z ... 
which represent relays, motors or other devices to be controlled by the circuit. It is required to 
find a network which gives, for each possible combination of values of the independent 
variables, the correct values for all the dependent variables. The following principles give the 
general method of solution. 

I. Additional dependent variables must be introduced for each added phase of operation of a 
sequential system. Thus if it is desired to construct a system which operates in three steps. two 
additional variables must be introduced to represent the beginning of the last two steps. These 
additional variables may represent contacts on a stepping switch or relays which lock in 
sequentially. Similarly each required time delay will require a new variable, representing a 
time delay relay of some sort. Other fonns of relays which may be necessary will usually be 
obvious from the nature of the problem. 

2. The hindrance equations for each of the dependent variables should now be written down. 
These functions may involve any of the variables, dependent or independent, including the 
variable whose function is being determined (as, for example, in a lock-in circuit). The 
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Table II. Relation of Operating Characteristics and Equations 

Symbol 

X 

= 
X' 

+ 
(- -)' 

XU - p) 

In Tenns of Operation 

The switch or relay X is operated 
If 
The switch or relay X is not operated 
Or 
And 
The circuit (- -) is not closed, or apply 

De Morgan's theorem 
X has been operated for at least p seconds 

In Tenns of Nonoperation 

The switch or relay X is not operated 
If 
The switch or relay X is operated 
And 
Or 
The circuit (- -) is closed, or apply 

De Morgan's theorem 
X has been open for at least p seconds 

If the dependent variable appears in its own defining function (as in a lock-in circuit) strict adherence 
to the above leads to confusing sentences. In such cases the following equivalents should be used. 
X = RX + S X is operated when R is closed 

(providing S is closed) and remains so 
independent of R until S opens 

X = (R' + X)S' X is opened when R is closed 
(providing S is closed) and remains 
so independent of R until S opens 

In using this table it is usually best to write the function under consideration either as a sum of pure 
products or as a product of pure sums. In the case of a sum of products the characteristics should be 
defined in tenns of nonoperation; for a product of sums in tenns of operation. If this is not done it is 
difficult to give implicit and explicit parentheses the proper significance. 

conditions may be either conditions for operation or for nonoperation. Equations are written 
from operating characteristics according to Table II. To illustrate the use of this table suppose a 
relay U is to operate if x is operated and y or z is operated and v or w or z is not operated. The 
expression for A will be 

U = x + yz + v' w' z' . 

Lock-in relay equations have already been discussed. It does not, of course. matter if the same 
conditions are put in the expression more than once - all superfluous material will disappear in 
the final simplification. 

3. The expressions for the various dependent variables should next be simplified as much as 
possible by means of the theorems on manipulation of these quantities. Just how much this can 
be done depends somewhat on the ingenuity of the designer. 

4. The resulting circuit should now be drawn. Any necessary additions dictated by practical 
considerations such as current-carrying ability. sequence of contact operation, etc., should be 
made. 

V. Illustrative Examples 

In this section several problems will be solved with the methods which have been 
developed. The examples are intended more to illustrate the use of the calculus in actual 
problems and to show the versatility of relay and switching circuits than to describe practical 
devices. 
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It is possible to perform complex mathematical operations by means of relay circuits. 
Numbers may be represented by the positions of relays or stepping switches, and 
interconnections between sets of relays can be made to represent various mathematical 
operations. In fact, any operation that can be completely described in a finite number of steps 
using the words "if," "or," "and," etc. (see Table 11), can be done automatically with relays. 
The last example is an illustration of a mathematical operation accomplished with relays. 

A Selective Circuit 

A relay V is to operate when anyone, any three or when all four of the relays w, x, y and z 
are operated but not when none or two are operated. The hindrance function for V will 
evidently be: 

V = wxyz + w' x' yz + w' xy' z + w' xyz' + wx' y' z + wx' yz' + wxy' z' 

Reducing to the simplest series-parallel form: 

V = w[x(yz + y'z') + x'(y'z + yz')] + w'[x(y'z + yz') + x'yz] 

x x' x ' +@wr'U-
:r:lt :rf. 

Figure 30. Serln-perellel realizetlon of 
selective circuit 

This circuit is shown in Figure 30. It requires 20 elements. However, using the symmetric
function method, we may write for V: 

V = S'.3.4(W,X,y,z) . 

u 

Figure 31. Selective circuit from .ymmetrlc
function method 

This circuit (Figure 3 I) contains only 15 elements. A still further reduction may be made with 
the following device. First write 

V' = SO.2(w,x,y,z) . 

~rL r~~ , 
+.-t: ~ ~ 0-0 U 

W X Y z 
Figure 32. Negative of .electlva circuit from 

symmetric-function method 
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This has the circuit of Figure 32. What is required is the negative of this function. This is a 
planar network and we may apply the theorem on the dual of a network, thus obtaining the 
circuit shown in Figure 33. This contains 14 elements and is probably the most economical 
circuit of any sort. 

Figure 33. DUll of figure 32 

Design of an Electric Combination Lock 

An electric lock is to be constructed with the following characteristics. There are to be five 
pushbutton switches available on the front of the lock. These will be labeled a, b, c, d, e. To 
operate the lock the buttons must be pressed in the following order: c, b, a and c 
simultaneously, d. When operated in this sequence the lock is to unlock, but if any button is 
pressed incorrectly an alarm V is to operate. To relock the system a switch g must be operated. 
To release the alarm once it has started a switch h must be operated. This being a sequential 
system either a stepping switch or additional sequential relays are required. Using sequential 
relays let them be denoted by w, x, y and z corresponding respectively to the correct sequence 
of operating the push buttons. An additional time-delay relay is also required due to the third 
step in the operation. Obviously, even in correct operation a and c cannot be pressed at exactly 
the same time, but if only one is pressed and held down the alarm should operate. Therefore 
assume an auxiliary time delay relay v which will operate if either a or c alone is pressed at the 
end of step 2 and held down longer than time s, the delay of the relay. 

+ 

z' 

r------"""OUo--____ ......, 
h' U 
~~-------~e~----~----rm)~-_+ 

Yo 
c~ 

d ~ y'c>o --0()0 X 
v~ 

------coOx • C:~, 
W b 

Wo C 
w 

u'c>o --000 g'-C • . : : c ::r: c' 

Z AND z' MAKE BEFORE BREAK U AND u' MAKE BEFORE BREAK 

Figure 34. Comblnltion-Iock circuit 
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When z has operated the lock unlocks and at this point let all the other relays drop out of the 
circuit. The equations of the system may be written down immediately: 

w == cw + z' + U' , 

x == bx + .1' + z' + U' , 

y == (a + c)y + x + z' + U' , 

z == zed + y) + g' + u' , 

v == x + ac + 0' c' + z' + U' , 

U == e(w' + abd)(w + x' + ad)[x + y' + dv(t - s)][y + bv(t - s)] U + h' + z' 

These expressions can be simplified considerably, first by combining the second and third 
factors in the first term of U, and then by factoring out the common terms of the several 
functions. The final simplified form is as below: This corresponds to the circuit of Figure 34. 

U= 

w== 

x == Z' + 

y == U' + 

v == 

z == g' + (y + d)z + U' 

Electric Adder to the Base Two 

h' + e [ ad (b + w') + x'] 

(x + y' + dv)(y + vb)U 
cw 

bx + w 

(a + c)y 

x + 

ac + a' c' 

A circuit is to be designed that will automatically add two numbers, using only relays and 
switches. Although any numbering base could be used the circuit is greatly simplified by using 
the scale of two. Each digit is thus either 0 or 1; the number whose digits in order are 

k 

ak, ak-1, 0k-2,···02, 01, ao has the value L a)2J. 
)=0 

Let the two numbers which are to be added be represented by a series of switches: 
ak> ak-1 , ... al' ao representing the various digits of one of the numbers and 
bko b k - I , ... b l , bo the digits of the other number. The sum will be represented by the 
positions of a set of relays S k + I , S to S k _ I ... S I , So· A number which is carried to the jth 

column from the (j - 1 )th column will be represented by a relay C J' If the value of any digit is 
zero, the corresponding relay or switch will be taken to be in the position of zero hindrance; if 
one, in the position where the hindrance is one. The actual addition is shown below: 
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CHI ('k ('j+ICj ('2 C I 

ak---aj+ 1 ar--a 2a 1 ao 

hk hj+1hj b2 h 1bo 

CHI Sk ---S;+ 1 Sj ---S2 ,S I So 

or 

Sk+1 

Carried numbers 
First number 
Second number 

Sum 

495 

Starting from the right, So is one if ao is one and ho is zero or if ao is zero and bo one but not 
otherwise. Hence 

C 1 is one if both ao and ho are one but not otherwise: 

CI = aO'bo . 

S j is one if just one of a j' h j' C j is one, or if all three are one: 

Sj = 5 1.3 (aj' bj , Cj), j = I, 2, ... k. 

C j+ 1 is one if two or if three of these variables are one: 

C;+I = S2.3(aj, hi' Cj)' j = I, 2, ... k . 

Using the method of symmetric functions, and shifting down for Sj gives the circuits of 
Figure 35. Eliminating superfluous elements we arrive at Figure 36. 

·C~+lj·O~. 
a· b· c' ~~~l 

J ~ ~ 

Cj+1 

aj bj 

Figure 35. Circuits for electric adder Figure 36. Simpliflcation of flgure 35 
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