
INSTRUCTION
MANUAL

DIGI-CDMP JI®
MECHANICAL
BINARY
DIGITAL
COMPUTER

It ' s more fun than you think
when you think for fun

Foreword.
Chapter 1
Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11
Chapter 12

Chapter 13

Chapter 14

TABLE OF CONTENTS PAGE

... , 1
About your DIGI-COMP II. 2
Checking out your DIGI·COMP II 5
New Operations Check List. 5
Binary Counting. .10
Binary to Decimal Number Conversion 11
Arithmetic Operations 15
Count & Clear 15
Addition & Multiplication. .16
Subtraction & Division. .17
Compiler Language ... DIGI-TRAN18
DIGI-TRAN Commands : 18
The Accumulator Register. 19
Speeding up DIGI-COMP II Operation 20
More About Binary Numbers 21
The Octal System 21
Binary to Decimal Conversion Using Octal. 22
Decimal to Binary Using Octal.22
The MQ (Multiplier Quotient) Register.23

and The Distributor
The Memory Register and Addition.25
Rules of Binary Addition. 28
Multiplication of Binary Numbers.29
Multiplying and Shifting. .30
Multiply-Add Operation .. ,31
Converting Decimal Binary Automatically.31
Complement Arithmetic and Subtraction.33
Negative Numbers. .36
Division of Binary Numbers ' . 040
How to Handle Remainders. .. .41
Binary Fractions. .. .43
Summary of Information Necessary46

to Operate DIGI-COMP II
Special Problems and Applications for DIGI-COMP II 49
Computing Areas. .49
Calculating the Weight of Air 49
The Principle of Archimedes49
Iteration ... 50
Summing Infinite Series. 51
The Population Explosion. ; 53
Area of a Circle. .54
Random Number Generation.55
Simulation.56
An Accounting Problem.57
Ballistic Missile Calculations.58
Programs for Problems 60
How to Program Your DIGI-COMP II 63
Problems on a Commercial Electronic
Digital Computer
Differences between "DIGI-TRAN and FORTRAN". 63

eee~

FOREWORD
I r---~·e

HOW TO USE THIS INSTRUCTION MANUAL
There are, of course, many ways to use the material in this manual with your
DIGI-COMP II. After you have assembled DIGI-COMP II we suggest the following
possibilities for starting out. Note the binary-decimal conversion table on your
Programmers Card.

I. BEGINNERS
A. Read through Ch~pter 1.
B. Learn how to INITIALIZE your DIGI-COMP II using the NEW OPERATIONS

Check List in Chapter 2, Page 5.
C. Work out the five TESTS in Chapter 2, from Page 6 to Page 8.
D. Learn how to read your DIGI-COMP II in binary and decimal numbers in

Chapter 3.
E. Learn how to COUNT, CLEAR, ADD, MULTIPLY, SUBTRACT and

DIVIDE from Chapter 4.
F. Learn to understand the COMPILER Language codes in Chapter 4.
G. Review the OPERATING INFORMATION given in Chapter 12.
H. Try to do Problems 1, 2, 3, 4, 5, and 13 of Chapter 13.
1. You will then no longer be a beginner and can go back and after

reviewing Chapters 3 and 4, study the operation in more detail from
Chapters 5 through 10. This should help you do problems 6, 7, 8, 9, 10,
11, 12, 14, and 15.

J. If you haven't already done so, try our DIGI-COMP I, and learn more
about computer machine organization, and logic.

II. INTERMEDIATE
A. Go through Chapters 1, 2, 3 and 4 thoroughly.
B. Review the rules for binary addition of Chapter 7, Page 26.
C. Review the OPERATING INFORMATION of Chapter 12.
D. Try a few problems of Chapter 13, perhaps 1, 2,3,4,5, 6, 7 and 13.
E. Review Chapters 5 through 11 and try doing the rest of the problems of

Chapter 13.
F. Review Chapter 14 on electronic computer FORTRAN Language.
G. TRY our DIGI-COMP I with its Advanced Manual.

III. ADVANCED
A. Simply go right through the Manual from Chapter 1 through 14. Do

related problems of Chapter 13 as mentioned above.
B. Try our DIGI-COMP I with its Advanced Manual and you will have

fairly covered most of the basic theory of organization and operation of
Digital Computers.

- 1-

CHAPTER 1

ABOUT YOUR DIGI-COMP II
DIGI-COMP II is an educational computer which actually works in a manner analogous
to an electronic digital computer. It performs a surprising number (but of
course not all) of the operations performed by the electronic computer, but in a
visible and mechanical manner rather than electronically.

As an educational device the primary purpose of DIGI-COMP II is to
show how a computer works in binary arithmetic by mechanical simulation. To
explain how a computer works, considerable attention must be devoted to
an understanding of the binary number system. The operation of a computer, its
logical design and many other important underlying concepts may be
much better explained and understood by the aid of this mechanical model. Chief
among the benefits of this approach is that no understanding of electronic
circuitry is demanded.

The various operations that DIGI-COMP II performs are executed in slow
motion as compared with an electronic machine. Where the electronic computer
requires only a few millionths of a second to complete an operation,
DIGI-COMP II requires a few seconds to complete the same task. Thus,
the speed of the electronic computer has been reduced by a factor
of a million to one. This enables the person operating DIGI-COMP II to comprehend
what is happening as it occurs.

Further, the programming of DIGI-COMP II will be developed using computer
languages similar to those in use in electronic computers. You may
recognize words like FORTRAN or COBOL as languages used in many
computers. Because DIGI-COMP II is a real binary digital computer its
languages will be of the same type but, of course, specialized for it.
As a climax to this Instruction Manual, in Chapter 14 you will be shown
how to convert your DIGI-COMP II language to the IBM Computer FORTRAN
language so that if you should have available an IBM computer of the
models stated, you will actually be able to insert simple problems into it with no
further help required!!!

All of the computer language words used in this Manual are summarized
and defined at the end of this Manual, and on your programmers card.

In DIGI-COMP II an electronic current impulse is simulated by a
rolling ball. The ball rolls down an inclined surface under the force of gravity
in an exposed manner. Thus, gravity provides the source of power for
DIGI-COMP II rather than an electrical power supply. In the course of its
journey the ball is directed by guides (which simulate the wires
which guide electrons in the electronic computer) to the entry points
of successive binary digital logic elements. The ball upon entering a logic element
"questions" or "interrogates" it for its "state" and possibly changes
its "state" in the process of going through it.

- 2 -

•
•
1+
IXo

The logic elements in DIGI-COMP II simulate "FLIP-FLOP" circuits in an electronic
computer. These elements are simply pivoted levers which have two
possible positions. In entering the element from the top the ball is directed
to exit along one of two possible paths according to the present setting
of the element. The path of the ball out of the element is deter-
mined by the setting of the element and reveals the setting of the element. This
is the sense in which the ball "interrogates" or questions the element
as to its prior state. The "state", of course, refers to its left
or right setting.

Thus, a single ball in its trip from the INPUT GUIDE at the top of the exposed surface
to the COLLECTOR GUIDE at the bottom may take anyone of many possible
paths, questioning and changing the settings or states of the
logic elements in the process. If the desired operation is only partially completed
by the ba 11 when it reaches the bottom it will be automatically directed
to "gate" or trigger a successor ball from the top. This successor will in turn
travel down the surface by a different path and gate still another successor
ball if required, which will behave in like manner, etc., until the
entire operation is complete. The machine will then shut itself off by di
recting the last ball to by-pass the gating mechanism.

The operation of DIGI-COMP II can be entirely automatic or manual.
With appropriate settings your DIGI-COMP II can be made to:

1. Count out a specified number of balls.
2. Count in binary arithmetic.
3. Add.
4. Multiply.
5. Multiply and add.
6. Obtain either the "l's" or "2's" complement.
7. Subtract.
8. Divide.
9. Zero or clear. • 10. Overflow.

11. Halt. •

+
IX

Moreover, all of these operations may be performed either in a "MANUAL" or an
"AUTOMATIC" mode. In the AUTOMATIC mode only a single pull of the
START switch is required to complete any of the operations enumerated,
but in the MANUAL mode the START switch must be pulled once
for each machine cycle. Thus, the MANUAL mode permits a
further slowing down of the machine for demonstration purposes if desired.

Your DIGI-COMP II operates in the Binary Number System. You
will learn much about this important base two numbering system while
using DIGI-COMP II. Indeed, the manner in which virtually all electronic computers
work is intimately related to this binary or base two system.

- 3 -

en
INPUT GUIDE

MULTIPLY

DISTRIBUTOR ~ ~ __ --------

MQ OR MULTIPUEIV '\.. ,__ CLEAR
QUOTIENT REGISTER ~/ 02 , ~
(CONTAINS 100 ,/ ~ \ \) COUNT!

FOR MULTIPLY OR I " '~"" 011 FOR DIVIDE). \ ~ 03 \ \)
~ \~ ~_~_ _ _ CF1 ,

1
- 01--'1"---- -___ /~/M11 l ~~ ACCUMULATOR

~ I ",' , REGISTER
I . \::'~ I ":'~' 0 ---- l (CONTAINS 0000000)

I . I 'WE J A1 Y
02 ~M2~0 I

.lo~ I <~ "~/_~ I ~ I .O·,,,,~·) I T1

I <0 \.. 0 A2 I
I . I - I

03 I M3 J ~II
I §)l ~ol \":5~ : T2
I (Q ... O. I .~ Dr • - "-

'1. Dr I "-.. A3 I\)
L __ ~ ~:4 1 <O'~T'

I'O!' ~~-LT3
1"-.0 A4 I~
,l ~-1-:J (..-:0'\ !'

~~T4
MEMORY REGISTER A5 I ~
(CONTAINS 1101) ~ ~

\y~ I T5

A61~
1<2:~~
~IT6

I -~
Idb\-h

OVERFLOW ! ~ I
~ ~---~

COMPLEMENT

NOT:E~:""""""""~
REGISTERS ARE READ FROM BOTTOM TO
TOP TO CORRESPOND TO READING THE
BINARY NUMBER FROM LEFT TO RIGHT.

~:2

~'(I
raul I
::II--~-· I START

COLLECTOR GUIDE

- 4-

CHAPTER 2

CHECKING OUT YOUR

DIGI-COMP II
Now that you have assembled DIGI-COMP II let us identify its basic parts and
test them to be sure they operate properly.

Figure 1 shows the top of the computer and identifies the three binary
number "registers" by name. They are the "ACCUMULATOR"
REGISTER, the "M-Q" REGISTER and the "MEMORY" REGISTER.

These three registers are each comprised of a number of logic elements. One of
the functions of these registers is to hold or "remember" binary
numbers used in calculations. All of the arithmetic performed
by the computer occurs in either the ACCUMULATOR or the
M-Q REGISTER. The MEMORY REGISTER "remembers" a number but this
number is not changed during the course of calculation.

Each of these registers is comprised of binary "logic elements". A regis
ter may contain a number having as many binary digits, or "bits",
as the REGISTER has logic elements. Specifically, the
ACCUMULATOR may contain any 7 bit number; the M-Q REGISTER any 3 bit
number; and the MEMORY REGISTER any 4 bit number. Binary numbers will be
explained in more detail later by actually operating DIGI-COMP II and
noting what they represent.

Before describing the use of the three REGISTERS, let us first check them out to
see if they are working properly.

As with an electronic computer, if the machine is to know what we want
it to do, all of the switches must be set correctly. This is called
"initializing" the computer. To help you remember how to do it, the following
check list has been developed. Also, the outline of each "switch"
or "flip-flop" in its correct normal position has been printed
on the face of your DIGI-COMP II.

At the beginning of a new operation you will be instructed to, "INITIALIZE" the
computer.

This means to follow the instructions given in the "New Operation
Check List" below performing all the steps that need to be performed. If
the elements to be reset are already in their correct position then no change
need be made, of course.

NEW OPERATIONS CHECK LIST
1. Be sure that Tl, T2, T3, T4, TS and T6 are to the left.

2. Be sure that CFl is to the left and that CF2 is to the right.

3. Set flip-flops Dl, D2, D3, in the DISTRIBUTOR to the right as shown in Figure L

4. Set all the Control Switches to their "normal positions" according to
the following table (Figure 1 also shows the control switches in their
normal positions).

Normal Positions of Control Switches

Switch Name

MULTIPLY
CLEAR
COUNT
COMPLEMENT
OVERFLOW
A-M

Setting

OFF
OFF
OFF
OFF
RUN
AUTO

Positions

left
left
left
right
left
left

5. Place all of the balls (or a sufficient number) in the INPUT GUIDE at the top of
the computer.

- 5-

If the computer is "INITIALIZED" properly and if it is operated correctly
and without error, it will never actually be required to change
any settings in Step 1. In Step 4 it will be noticed that the "normal" position of
all switches that have ON and OFF positions is OFF.

Notice also that the normal position of every switch is to the left except
the COMPLEMENT SWITCH, which is to the right. Flip-flops 01,
02, 03 mentioned in Step 4 will have to be initialized
after every operation in which the MUL TIPL Y SWITCH is ON. Otherwise, they will
remain initialized correctly and need only be checked but not actually changed.

In each of the Experiments to follow, frequent requests will be made
that the computer be "INITIALIZED" according to the New Operation Check List.

WHEN THE INITIALIZE COMMAND IS GIVEN YOU SHOULD SET ALL OF THE
SWITCHES ACCORDING TO THIS CHECK LIST.

e TEST 1
First, "INITIALIZE" your DIGI-COMP II as described in the
new operation Check List given on Page 4.

Next, turn all the flip-flops (AI, A2, A3, A4, AS, A6, A7) in the ACCUMULATOR
REGISTER to the right. The vertical column of numbers is always read. So the
accumulator is now read 1111111. (You may not know what this
means yet, but it will become clear very shortly). Next, turn the "COUNT" switch to
the "ON" (right) position and the "AM" switch to "MANUAL" (right)
position. Pull the start switch and see what happens.

A ball should be triggered from the top, roll down past the "MULTIPLY" switch to the
"CLEAR" switch and inside the "COUNT" switch. It should then go down
through the ACCUMULATOR and change each "One" (1) to a "Zero"
(0) before coming out the bottom and being caught in the COLLECTOR GUIDE.

If it doesn't work, it is probably because you didn't initialize DIGI-COMP II
properly. Go back and try it again. If the marble jammed, look
carefully at it and see if you can figure out why. Wiggle that flip-flop
back and forth until it is nice and free, then set them all back
to "one" (1) and try again.

Now, be/ore you go on to the next test let us start learning how to "talk"
to your computer in a language both of you can understand.

In communicating with computers programmers develop a special language or short
hand to save time. For DIGI-COMP II we can write the program for Test 1 using our
own special language. This is called a machine' la1/guagc.

1. INITIALIZE
2. A = 1111111
3. COUNT = ON
4. AM = MANUAL
Sa START

If you compare this program to the instructions for Test 1, you should
begin to understand what each step means. To be sure you understand each command
in the program, see your programmer's card for a complete list of possible
commands and their definitions,

-6-

• • TEST 2
In performing Test II, try setting all the switches correctly just by looking
at the program below.

1. INITIALIZE
2. A = 1111111
3. CLEAR = ON
4. AUTO = MANUAL
S. START

If you did this correctly you should have first set the switches and flip-flops as
directed in the New Operation Check List (Page 4). (The "COUNT"
SWITCH should have been turned OFF.)

Next, you should have turned all the ACCUMULATOR flip-flops to the right (1) position.
The third step was to turn the "CLEAR" switch to the right (on) position.
Fourth, to turn the "AM" switch to "MANUAL".

Now, when you pull the START SWITCH the marble should go down the guide, to the
right of the "MULTIPLY" switch, then go to the left of the "CLEAR" switch,
drop to the lower level and change all the ACCUMULATOR flip-flops
to "zero".

If it didn't work you should check the switch settings again.
If only some of the flip-flops were changed to zero, wiggle the ones that did not
flip. If they all changed to zero but the marble didn't come out the RETURN
GUIDE, check the assembly instructions to be sure it is
in correctly .

•• TEST 3

• 1. INITIALIZE
2. A = 0000000
3. AM = MANUAL
4. START

If you followed the program correctly and your computer is assembled properly,
the marble should have turned all of the ACCUMULATOR MODE T1, T2, T3,
T4, TS, T6 FLIP-FLOPS to the right. If it didn't change
them all wiggle the ones that didn't change.

Now leave everything as is and start another ball. It should change the
ACCUMULATOR to all "ones" (1). Starting a third marble will
cause all of the ACCUMULATOR MODE FLIP-FLOPS to turn back to the left.
(Again if they don't all turn back, wiggle the ones that don't).

• • TEST 4

•• 1. INITIALIZE
2. AM = MANUAL
3. C = ON
4. Manually take a marble and place it in the guide just above the "COMPLE

MENT" SWITCH. Let it roll down the guide into the COMPLEMENT SWITCH.

Notice that the ball first goes out of the COMPLEMENT SWITCH to the right. Next,
it was directed out of CF2 to the left and simultaneously "flipped" CF2 to the opposite
position. Then the ball was guided to enter the AM SWITCH which further directed
it to the left.

Repeat Step 4 several times.

A peculiar result may now be noted. Although the first ball exited from CF2 to the
left, the second ball exited to the right. Moreover, each successive ball
alternated between the left and right exit out of CF2.

The element called CF2, is a simple "FLIP-FLOP" called the "second
complement FLIP-FLOP" in DIGI-C OMP II. It is used as part of
the necessary circuitry to complement the ACCUMULATOR but this will be
explained in more detai1later. What should be noticed now is its FLIP-FLOP behavior.

- 7 -

Each successive ball entering CF2 can be imagined to be asking it the question,
"Are you set to the right or to the left?" If the answer is "to the right",
the ball flips it to the left and exits to the left. The next ball
asks the same question but gets a different answer. CF2 responds that its
setting is "to the left". In this case the ball will flip it to the
right an d exit to the right. This FLIP-FLOP cycle will repeat over and over
as long as it is questioned.

This questioning action of a ball in DIGI-COMP II, or an electrical impulse
in a digital computer, is referred to as "INTERROGATING " the Logic
Element for its binary "state". In DIGI-COMP II the "state"
is the element's right or left setting, whereas in an
electronic computer it may be one of two voltage levels, an "ON" or
"OFF" condition or a magnetized or unmagnetized condition
of a circuit element. It is called "BINARY" state because there are only two
possible states. In an electronic computer millions of impulses interrogate
and activate electronic FLIP-FLOPS in a second of operation!

•• TEST 5

•• •
1. INITIALIZE
2. AM = MANUAL
3. C = OFF
4. Repeat Step 4 of Test 4 again several times.

This time the ball will not be directed by the COMPLEMENT SWITCH to enter CF2.
Instead the COMPLEMENT SWITCH will cause it to leave to the left and by-pass
CF2 without interrogating and without flipping CF2. However, it should be clear that
the ball is still questioning or interrogating the COMPLEMENT SWITCH this time, as
indeed it was before.

The logical relationships between the COMPLEMENT SWITCH and FLIP-FLOP CF2
can be illustrated by what is known as a flow chart. The ball may be imagined to
begin at the top and ask the questions indicated in each box. The answer
that it obtains from the box determines which of the two paths it
follows on its way out.

ON
C

OFF

OFF ON
HALT

HALT START

Thus the ball starting from the top asks the COMPLEMENT SWITCH a question and
depending on the answer goes one of two ways, either to AM or to CF2. Similarly it asks
the other Logic Elements questions and each time does one of two things depending on
the answer, and then is directed to another logic element.

Flow charts of the type shown in Figure II are frequently used by computer
people to display the logical relations between various elements
and conditions.

- 8 -

In DIGI-COMP II switches such as the COMPLEMENT SWITCH and AM are only
changed by the operator but FLIP-FLOPS like CF2 are changed by the machine
process. Each of these binary logic elements may therefore be considered to
store or memorize a "bit" or "binary digit" of information by virtue of its setting.
Machines like DIGI-COMP II are frequently called "finite state"
machines because there is a finite or limited number of states that the
machine can take on.

Electronic computers work in a manner analogous to DIGI-COMP II. Instead of
balls, electronic impulses in the form of voltage level changes are used
but the net result is the same. One cannot see the voltage level
in a transistorized circuit flip from one value to another or the magnetic
field in a tiny iron doughnut called a "core" reverse itself, but
these reversals do occur and in a manner entirely similar to the mechanical
flipping of the FLIP-FLOP elements in DIGI-COMP II, but of course
these changes occur millions of times faster.

- 9-

CHAPTER 3

BINARY COUNTING
BINARY TO DECIMAL NUMBER CONVERSION

QUESTIONS:

1. How do computers count in binary?
2. How do "carries" take place in counting?
3. How much is each bit position of a binary number worth?
4. How does the Auto Manual Switch work?
5. How maya binary number be changed to its decimal value?
6. How maya decimal number be changed to its binary value?

EXPERIMENT I:
BINARY COUNTING

(Consult Figure 1 to identify Logic Elements)
1. INITIALIZE
2. AM = MANUAL
3. A = 0000000
4. COUNT = ON
5. START

A ball will be triggered from the INPUT GUIDE to roll down the surface and add one
into the ACCUMULATOR REGISTER. When the ball has reached the COLLECTOR
GUIDE the ACCUMULATOR will read:

1
o
o
o
o
o
o

6. Repeat Step 5 another 6 times writing each successive accumulator
reading down.

By recording each number obtained we get the following binary numbers:

Number or times START switcb was pulled

0 1 2 3 4 5 6 7

0 1 0 1 0 1 0 1
Binary 0 0 1 1 0 0 1 J
number 0 0 0 0 1 1 1 1
obtained 0 0 0 0 0 0 0 0
in the 0 0 0 0 0 0 0 0
ACCUMULATOR 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

- 10 -

As a design convenience binary numbers are represented vertically in the
ACCUMULATOR in DIGI-COMP II. However, it is customary to express binary numbers
horizontally, rather than vertically, when writing them down. To write
these numbers horizontally from left to right we write them
to correspond with reading the ACCUMULATOR in DIGI-COMP II from bottom to top.
Therefore, these same numbers would be more customarily expressed as,

1 0000001 or 1
2 0000010 or 10
3 0000011 or 11
4 0000100 or 100
S 0000101 or 101
6 0000110 or 110
7 0000111 or 111

(If you stand on the right side, which is the side the START SWITCH is on, you can see
that you will read the ACCUMULATOR as an ordinary binary number.)

7. Pull the START switch once more and observe the "carries" that
take place as one is added to 7. That is as,

0000111 + 0000001 becomes 0001000

Notice that Al flips to "0" and the ball is carried to the entry of A2. Then A2
flips to "0" and the ball goes to A3. Then A3 flips to "0" and the
ball goes to A4. Next, however, A4 is a "0" rather than a "I" and so no
carry to AS takes place. Instead, the ball leaves the ACCUMULATOR
without affecting it further.

EXPERIMENT II:
8. AM = AUTO
9. START

The ninth ball will change the ACCUMULATOR TO 9 = 0001001 and will then be directed
by the AM Switch to roll under the START SWITCH. This automatically triggers
the next ball. (If the ball should ever happen to pass under the
START SWITCH without triggering another one, just pull it manually.)

Now we can watch the automatic action of the computer as it counts. Every few
seconds another ball is triggered from the supply at the top automatically
and it adds one to the ACCUMULATOR in binary.

To stop the automatic counting it is only necessary to turn the AM Switch back to
the Manual position. To re-start the automatic operation turn AM back again to
Auto and Pull the START SWITCH.

BINARY TO DECIMAL NUMBER CONVERSION
Let us stop for a minute and learn how to read out the numbers of the registers.

It is very simple to read out the decimal number held in each register
in binary numbers.

1. Note that in the middle of each FLIP-FLOP read out there is a small
number which you used during assembly to know where each
Read-Out Indicator went.

2. To read a register, simply add the values of these small
numbers up for each place there is a 1, but do not add those

. numbers where there is a O. For example, to read out the ACCUMULATOR
register in the following case the numbers to be read are
shown to the right of the column.

- 11 -

So the decimal number in the ACCUMULATOR is 86.
Note that only when a 1 is up do we include the
value of that FLIP-FLOP toward the total.

To be sure we understand, another example is,

So the number in this example is 35. Later when
you learn about binary numbers you will be
able to both read and set in binary numbers without
the aid of the little decimal numbers on each
FLIP-FLOP.

The MQ and MEMORY REGISTERS are read the
same way. For example, for the MEMORY
REGISTER -

and similarly for the MQ Register.

o ""y, .

"p.
.'\'0' .

. 1-.'

"p
SO)
'-_~ _~6 __ 'j"

\..0
'\ ,0.

';"0 '. ",".

0 "'-.
!Sal

.:.--'~ -:.-
~. " :,_,,0:
';;"(i,
-'-:-~ .

There are several methods of converting back and forth between binary and
decimal numbers. The easiest type of conversion method to learn is a
table. Take out your programmer's card and you will see such a Table.

Program DIGI-COMP II as follows and you will see how this table is made.
1. INITIALIZE
2. COUNT = ON
3. A = 0000000
4. START

o

2

4

o

16

o

+64

86

2

0

0

32

+0

35

o

+8

13

Be sure to put all of the ba11s in the INPUT GUIDE. Each ba11 coming down through
the ACCUMULATOR will add one to it.

As each additional ba11 comes down through the ACCUMULATOR, compare the
readout with the next number in the Table. (If you get confused, the number
of ba11s at the bottom should be the same as the Decimal number
in the Table.)

With this Table it is possible to convert from binary to decimal or from decimal
to binary simply by looking up the desired number and getting its equivalent.

From the Table you wi11 notice that the binary numbers 1, 10, 100, 1000, 10000,
100000 and 1000000 correspond to the base ten numbers 1, 2, 4, 8, 16, 32, and 64.
Each successive one of these numbers is twice as large as its
predecessor and for reasons which will be explained later, they represent
consecutive powers of two. In decimal or base ten the numbers 1, 10, 100, 1000,
10000, 100000 have an entirely different meaning than in binary,
of course. Each of these numbers is ten times its predecessor in base ten.

You have learned that in decimal numbers, 683 actua11y means:
6 one hundreds + 8 tens + 3 ones.

- 12 -

Therefore, 683 can be written as:

or
or
or

683 = 600 + 80
683 = (6 x 100) + (8 x 10)
683 = (6 x 10 x 10) + (8 x 10)
683 = (6 x 102) + (8 x 10 f)

+3
+(3x1)
+(3x1)
+ (3 x 100)

(Any number raised to the power to zero is equal to one, thus 100 = 1.)

In the number 683 the digit 6 is in the "hundreds" position - the digit 8 is in the
"tens" position - and the digit 3 is in the "ones" or "unit" position.

In other words we may say that each digit in any decimal number is a different
power of ten depending on the position of the digit within the number.

\\'hat will each position in the binary number system mean?

In the binary system we have only two symbols (0 and 1). Therefore, EACH
POSITION REPRESENTS A DIFFERENT POWER OF TWO (2).

That is, they are 20, 21, 22, 23, and so on.

An example of a binary number is: 110

This number is read: "ONE, ONE, ZERO."

The meaning of this binary number can be written as in the following example:
110 = (1 x 22) + (1 x 21) + (0 x 20)

or 110 = (1 x 2 x 2) + (1 x 2) + (0 xl)
or 110 = (1 x 4) + (1 x 2) + (0 xl)
or 110 = 4 + 2 + 0

Given a binary number such as 0110101 we may express it as:

0100000 + 0010000 + 0000100 + 0000001 = 0110101

32 + 16 + 4 + 1 = S3

This gives us a convenient way to convert any binary number to a decimal
number without even using the table. We merely write down the
powers of two beginning from right to left above the binary
number to be converted and sum those powers that correspond to "I" bits in the
given number. Using the same example,

64 32 16 8 4 2 1
--------- -------------------------------
(0 1 1 0 1 0 1)2

0 + 32 + 16 + 0 + 4 + 0 + 1 = S3

The same technique can be used to read a binary number in the ACCUMULATOR REGISTER
of DIGI-COMP II and mentally convert it to decimal to better understand the
result. Beginning with the top bit of the ACCUMULATOR and proceeding
down we consider that the bit positions are worth 1, 2, 4, 8, 16, 32, 64 (these
are the small numbers printed on the readout indicators for easy reference.
We suggest that you cover them with a small piece of tape to make you learn faster.)
Wherever the bit is a "1" we sum this corresponding number but wherever it
is a "0" we do not.

Suppose, on the other hand, we are given a decimal number, such as 74, and wish to
express it in binary. We begin by putting down the numbers 1, 2, 4, 8, 16, 32, 64
in a string as before, but this time we start from the bottom of the list and ask:

Can we subtract 64 from the number? If the answer is "yes", perform the
subtraction obtaining a remainder and place a "I" in the last or
bottom digit. If "no", place a "0" and consider the number to be the remainder.

Next, can we subtract 32 from the remainder? If "yes", place "1" in the
second from last digit and perform the subtraction. If "no", place
a "0" and consider the present number to be the remainder.

Proceed in like fashion until the complete number is changed to binary. For example,
to convert 74 to binary we begin with Step 1 at the bottom and proceed upward
as follows:

- 13 -

Step 1 begin
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7

74-64 = 10
10-32
10-16
10-8 = 2
2-4
2-2 == 0
0-1

cannot be subtracted
cannot be subtracted

cannot be subtracted

cannot be subtracted

Place 1 in 7th position
Place 0 in 6th position
Place 0 in 5th position
Place 1 in 4th position
Place 0 in 3rd position
Place 1 in 2nd position
Place 0 in 1st position

Therefore,

74 =

o
1
o
1
o
o
1

= (1001010)

This result can, of course, be checked by binary to decimal conversion or by check
ing the conversion Table on your programmer's card. That is,

Number Worth if "I" Sum

0 1 0
1 2 2
0 4 0
1 8 8
0 16 0
0 32 0
1 64 + 64

74 (which checks)

Summarizing, to convert a binary number to decimal we begin at the bottom of the
register (left of the number) and subtract from the given decimal number.
Each time we can subtract one of the numbers 64, 32, 16, 8, 4, 2, 1
we place a "1" bit in the corresponding position, and each time we cannot
subtract, we place a "0" bit in the position. The remainder from the
subtraction is carried forward each time the subtraction can
be performed, but otherwise the last remainder obtained is carried forward.

QUESTIONS:
1. What is the binary equivalent of 63?
2. What is the binary equivalent of ll2?
3. What is the decimal equivalent of 1l01l01?
4. What is the decimal equivalent of 10010ll?

To check your answers consult the binary decimal conversion Table
on your programmer's card.

The binary numbers you have obtained by counting on DIGI-COMP II
are exactly the same as those used in most large scale electronic computers
except they may have a different number of bits. Numbers of this
nature are stored in MEMORY REGISTERS and used in Arithmetic
Registers for calculation. Professional programmers who must work closely with
the computer become very familiar with these numbers and are able to
convert from binary to decimal and vice versa quite readily while
they are in the process of checking out the program which they have written.

- 14 -

CHAPTER 4

ARITHMETIC
OPERATIONS

The front panel of DIGI-COMP II has a chart printed on it which is
meant to serve as a reminder for doing the basic arithmetic
operations.

COUNT:
In Chapter 3 we did some counting. To get more practice in counting
and using the front panel chart, put 15 marbles in the INPUT GUIDE
and Program DIGI-COMP II as follows:

1. INITIALIZE
2. A = 0000000
3. COUNT = ON

Now look at the front panel switch setting chart and compare each switch
position for the COUNT OPERATION with those you programmed

0001
0010
00 I I
0100
0101

into the computer. They should be the same. Now, pull the START SWITCH and
DIGI-COMP II will count until all the marbles have come down.
You should have (0001111) in the ACCUMULATOR now.

CLEAR:
Now program DIGI-COMP II according to the following:

1. INITIALIZE
2. A = 0001111
3. CLEAR = ON
4. AM = MANUAL
5. START

o
o
o
o
o
o
o

The ACCUMULATOR should have been cleared to 0000000 with one marble. Again, you
should compare your switch settings with those called for on the front panel chart
for the CLEAR operation.

- 15 -

ADDITION:
In addition of two numbers the method is to put (001) in the MQ REGISTER+
(always use the upper set of 01 numbers on the MQ FLIP-FLOPS except
when reading out the answer to a problem in division), one number to
be added in the MEMORY REGISTER and the other number in the 0 I 0 I
ACCUMULATOR. The answer will appear in the ACCUMULATOR.
If we wish to add 13 to 71, for example, put the binary equivalent of 13 which + I 0 I I
is (1101) in the MEMORY REGISTER (M) and the binary equivalent
of 71 which is (1000111) in the ACCUMULATOR REGISTER. In the 10000
languagilOf DIGI-COMP II, the command M = 1101 means

"Ente,!: ;n the MQ REGISTER". (Do not fo'get, unle,. told othe,w;se, always

use the upper set of numbers on the Indicators of the MQ REGISTER.)

With this as a background the program for this problem would be as follows:
1. INITIALIZE
2. MUL TIPL Y = ON
3. A = 1000111
4. M = 1101
5. MQ = 001
6. START

What should the ACCUMULATOR have when you finish?

If you set everything up properly the ACCUMULATOR should read 1010100.

Now try a problem yourself. The Program is the same; just change
the numbers in the MEMORY and ACCUMULATOR REGISTERS.
Write the Program for adding 15 to 112. If you do it correctly the answer should
be (1111111).

Make up some of your own addition problems. They can be any two numbers
whose sum is less than 128, with one of the numbers less than 16.
When you do it check your answer by decimal to binary
conversion to be sure it is correct.

MULTIPLICATION:
To multiply two numbers, put one of them in the MQ REGISTER and the
other in the MEMORY REGISTER. The answer will appear in the
ACCUMULATOR REGISTER.

x
As an example let us multiply 4 times 13. To do this, set up DIGI-CpMP II as
follows:

1. INITIALIZE

o I I
X 110

2. MULTIPLY = ON
3. A = 0000000
4. M = 1101

0110
o II

5. MQ = 100
6. START

If you did it correctly the answer should have been (0110100).

Now try to multiply 3 times 15. The Program is the same as above except that
M = 1111 and MQ = OIl. If you do it correctly, the answer should be
(0101101). Again you should make up some of your own problems and work them.
The number in the MQ REGISTER must be 7 or less and the number in the
MEMORY REGISTER must be 15 or less. Work out the answer in decimal
arithmetic and convert it to binary to check your answer.

- 16 -

10010

SUBTRACTION: -The general method used by DIGI-COMP II, and most electronic computers, is
called complement and add. The technique is to put the smaller of the two
numbers in the ACCUMULATOR REGISTER, perform the operation on it and add the
larger number to it. The answer will appear in the ACCUMULATOR. In performing the
COMPLEMENT operation DIGI-COMP II will take four marbles and shut off. Then
you change the switches to the ADD mode and start again. To
subtract 4 from 12 the program is as follows:

1. INITIALIZE
2. COMPLEMENT = ON
3. A = 0000100
4. M = 1100
5. MQ = 001
6. START
7. PAUSE*
8. MUL TIPL Y = ON
9. COMPLEMENT = OFF

10. START

The number in the ACCUMULATOR should be (0001000).

110 I 01
- 10 I I I

01 I I 10

Now subtract 14 from 15. The program is the same as above except that
A = (0001110) and M = 1111. The answer should be (0000001). Try some problems
yourself. Since the smaller number goes in the ACCUMULATOR it shouldn't be
larger than 14 because the MEMORY REGISTER will not hold numbers larger than 15.

*The PAUSE command means that you should pause until the computer has
completed its automatic cycle.

DIVISION:
Division is performed in DIGI-COMP II and in most electronic computers by
repeated subtractions. Basically the technique used is to place the Dividend
in the ACCUMULATOR and the Divisor in the MEMORY REGISTER. The
Dividend is then complemented and added to the contents of the MEMORY REGISTER
repeatedly. The answer will then appear in the LOWER set of numbers in the
MQ REGISTER.

As an example, the program for dividing 25 by 5 is as follows:
1. INITIALIZE
2. MQ = 111
3. A = 0011001
4. M = 0101 •
5. COMPLEMENT = ON
6, START
7. COMPLEMENT = OFF •
8. MUL TIPL Y = ON
9. OVERFLOW = HALT

10. START

Note that Steps 7, 8, 9 and 10 should be performed only after the complement
operation is completed. The answer (quotient) should appear in the
LOWER set of numbers in the MQ REGISTER. It should be 101.

Division gets more complicated if the divisor does not go into the dividend an
even number of times. Because remainders and therefore binary fractions
are involved these are discussed in Chapter 11.

In making up your own division problems you can follow the same
program as above; just change the values of A and M.

The six basic operations illustrated in this chapter have programs which are not
changed except by the numbers involved. The subtraction program is,
for instance, the same except for the values of A and M for any
subtraction problem. This situation is, as you might suspect, the same in electronic
computers as it is in the case of DIGI-COMP II.

- 17 -

COMPILER LANGUAGE ... DIGI-TRAN
To further reduce a programmers work, the manufacturers of electronic
digital computers have worked out what are known as "compiler"
or "assembly languages". (Except for the INITIALIZE command the type of
programming we have been doing so far is called "machine lanf!.uag('''.
This is a language that the computer can understand directly - no interpreter is
necessary.) These compiler languages have been largely responsible for the
fantastic growth rate of the computer industry. They have made it possible for a great
number of people to write relatively difficult programs with very little professional
training.

We can develop a "compiler language" called DIGI- TRAN which basically
combines several commands in one.

For instance we can combine commands number 1, 2, 5, 6, 7, 8 and 9 for
division into one large command which is simply called DIVIDE.
Then to write the program for dividing 25 by 5 is Simply:

1. A = 0011001
2. M = 0101
3. DIVIDE

As a further convenience to programmers, electronic computers are equipped with
automatic binary decimal converters.

So the program would then be written:
1. A = 25
2. M = 5
3. DIVIDE

DIGI-COMP II has no automatic converter, so we will stick with the binary
numbers.

In the rest of this book the programs will be written in the compiler
language. The six basic commands are listed below. The use of the one basic
command implies each of the individual commands in the machine
language. These are summarized in the chart on the front
panel of DIGI-COMP II and are listed in detail below.

COUNT

DIGI-TRAN
CLEAR

COMMANDS
ADD

MULTIPLY

SUBTRACT

DIVIDE

1. INITIALIZE
2. A = 0000000
3. COUNT = ON
4. START

1. INITIALIZE
2. CLEAR = ON
3. AM = MANU AL
4. START

1. INITIALIZE
2. MULTIPLY = ON
3, MQ = 001
4. START

1. INITIALIZE
2. MUL TIPL Y = ON
3. A = 0000000
4. START

1. INITIALIZE
2. COMPLEMENT = ON
3. MQ = 001
4. START
5. PAUSE
6. MUL TIPL Y = ON
7. COMPLEMENT = OFF
8. START

1. INITIALIZE
2. MQ = 111
3. COMPLEMENT = ON
4. START
5. PAUSE
6. COMPLEMENT = OFF
7. MULTIPLY = ON
8. OVERFLOW = HALT
9. START

- 18 -

CHAPTER 5

THE

ACCUMULATOR
REGISTER

We have used the ACCUMULATOR REGISTER for counting and learning
binary numbers in the previous sections. Now we will examine more of its
properties.

QUESTIONS:
1. What is meant by ACCUMULATOR Overflow?
2. How can we halt the Automatic Operation of the computer when an

overflow occurs?
3. What is the meaning of the word" ACCUMULATOR"?
4. What is the octal system and how is it used?
S. What is a "machine cycle"?
6. How can we speed up counting on DIGI-COMP II?
7. How are the ACCUMULATOR FLIP-FLOPS constructed?

EXPERIMENT I:
Program DIGI-COMP II according to the following:

Step 1 - 1. INITIALIZE
2. AM = MANUAL
3. A = 1111100
4. COUNT = ON

Now pull the START switch 6 times, waiting each time until the ball reaches
the bottom COLLECTOR GUIDE before pulling START again. Pay particular
attention to what happens when ball number 4 is triggered from the
INPUT GUIDE.

The ACCUMULATOR should read as follows after each ball is gated from the
supply at the top.

Number of
Balls Gated

o
1
2
3
4
5
6

After Gating
Accumulator Reads

1111100
1111101
1111110
1111111
0000000
0000001
0000010

When ball number 4 is gated, an ACCUMULATOR OVERFLOW takes place. This
means that the Register cannot hold the new number that results because it
has more binary digits than the Register has bit positions.
Thus, when "1" is added to 1111111, the result should be 10000000. But
the ACCUMULATOR cannot hold an 8 bit binary number and hence it records only the 7
low order bits giving 0000000 as the result. Moreover, an attempt is
made by the ACCUMULATOR to carry a "1" into a non-existent
eight bit position.

- 19 -

The overflow can be observed when the fourth ball is TRIGGERED. This ball
exits from A7 on the left path and enters the OVERFLOW SWITCH.

Step II - Reprogram DIGI-COMP II as we did in Step I above, except set the AM
switch to AUTO. Pull the START switch and count the balls as
they are triggered and flip the AM Switch back to MANUAL
after the sixth ball is triggered.

With the OVERFLOW SWITCH on RUN, the machine continues its automatic
operation even though an overflow takes place on the fourth ball and
it becomes necessary to stop the machine by turning the AM
Switch to MANUAL.

Step III - Repeat Step II, but this time set the OVERFLOW SWITCH to its HALT position.
Set the AM Switch to AUTO then Pull the START Switch.

This time the overflow on the fourth ball will halt the automatic operation of the
machine, and the ACCUMULATCR will read 0000000. In many operations
on a computer, it is necessary to detect an overflow and halt
the operation or perform an alternate operation. On other operations,
it is desired to ignore any overflow which might take place.
The Overflow RUN or HALT switch allows us to exercise either of these options.

EXPERIMENT II:

SPEEDING UP DIGI-COMP II OPERATION
The ACCUMULATOR REGISTER gets its name from its ability to "accumulate"
or "sum" numbers.

Step I - Set DIGI-COMP II to COUNT. (Check the front panel chart to be sure
you did it correctly.)

A "machine cycle" is all of the actions that one ball completes in its journey from
the INPUT GUIDE at the top of the computer to the COLLECTOR GUIDE at the
bottom. Each ball having completed a machine cycle trips the
START SWITCH automatically to initiate another machine cycle. You may wonder
if more than one of these cycles can go on at the same time.

Step II - START

Step III - As the computer is automatically counting, visually follow a new ball
when it is triggered. When it is about one third of the way
down, pull the START SWITCH triggering another ball. When the
first ball is about two thirds down the surface, pull
the START SWITCH again.

There will now be three balls rolling down the surface at the same time. Moreover,
as each ball reaches the START SWITCH and triggers another ball from
above, it will replace itself keeping three balls rolling down the
surface continuously. The machine will count correctly. even with multiple
balls going down the surface at the same time and the counting operation is thus
speeded up by a factor of three to one.

Virtually all electronic computers have an ACCUMULATOR REGISTER. Most
of the large scale electronic computers use binary arithmetic in
the ACCUMULATOR, just as in DIGI-COMP II. Therefore, learning how the
ACCUMULATOR works in DIGI-COMP II should help in visualizing how the
ACCUMULATOR works on an electronic computer.

Notic~ that the ACCUMULATOR is comprised of FLIP-FLOPS. If one of these
elemlnts is in the "zero" state an impulse flips it to the "one" state, but the
impulse does not "carry" to the next FLIP-FLOP. These simple rules
are sufficient to accomplish binary counting and addition.

- 20 -

EXPERIMENT III:
MORE ABOUT BINARY NUMBERS
So far we have shown you how to convert a binary number to a decimal number by
making use of the fact that the right-most position (top-most in DIGI-COMP II)
is worth "0" or "1", the second from right "0" or "2", etc., according
to whether its binary digit is a "0" or a "1". What do these special numbers
1, 2,4, 8, 16,32,64, etc., represent? In mathematics we learn
that these numbers are "powers of two" meaning that they
also may be represented by,

20,21, 22, 23, 24, 25, 26, etc.

where "2k" means multiply "2" by itself "k" times. The superscript
"k" is called the power of "2". For example, "25" means "2"
to. the 5th power or "2" multiplied by itself "5" times or
"2 x 2 x 2 x 2 x 2". Notice that "20" is assumed to be "1" despite the fact
that our definition does not otherwise tell us its value. It is consistent
for reasons which will not be given here to assume that any number
raised to the "0" power is always "1" with the exception of
"0" which is undefined.

It is possible to base a numbering system on any positive whole number, not just
two or ten. Let us consider a system based on eight, for example. Such a
system is called a "base eight" or "octal" system.

THE OCT At SYSTEM
The reason that our everyday numbering system is based on ten rather than
eight is certainly because man has ten fingers on both hands rather
than eight. If man had only a total of eight fingers he would
undoubtedly have developed the octal system rather than our present decimal
system. He would have counted as follows:

1,2,3,4, 5,6, 7, 10, 11, 12, 13, 14, 15, 16, 17,
20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37
40.

Notice that man counting on his fingers would have called his eighth finger (10)
instead of 8. Then starting over again on his 9th finger, or first finger
on his other hand, he would have called it (11), etc. In octal there
is no symbol "8" or "9" for eight or nine. Instead only the symbols 0, 1,2,3,
4, 5, 6, 7 are used.

A base eight number such as (3745)8 may be interpreted as,

3 x 83 + 7 x 82 + 4 x 81 + 5 x 80 where,

83 = 8 x 8 x 8, 82 = 8 x 8, 81 = 8, and 80 = 1
In other words,

(3745)8 = 3 x 512 + 7 x 64 + 4 x 8 + 5 = 1536 + 448 + 32 + 5

which is equal to 2021. All the numbers outside the parentheses are in base ten.

By similar reasoning a binary or base two number such as 10110101001 may be in
terpreted in decimal or base ten as,

1 x 210 + 0 x 29 + 1 x 28 + 1 x 27 + 0 x 26 +

1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20
or

1024 + 0 + 256 + 128 + 0 + 32 + 0 + 8 + 0 + 0 + 1 = 1449

All numbers in this equation are in base 10, not just the 1449.

Binary numbers are long and cumbersome to write down while octal
numbers are shorter. A very simple relationship exists between binary and .octal
numbers and it is easy to convert from binary to octal and vice versa.

Consider the binary number, (11110111100000010001)2' If the
digits of this number are grouped three at a time starting from the right
we obtain, (011 110111]00000 010 001), where a leading "0" was added to make
the triplets come out even. As you should now know,

- 21 -

0= (000) 2 = (010) 4 = (100) 6 = (110)
1 = (001) 3 = (011) 5 = (101) 7 = (111)

011 110 111 100 000 010 001
0 0 0 0 0 0 0

3 6 7 4 0 2 1

And thus each triplet can be replaced by one of the digits "0" through "7".
Therefore, our binary number becomes (3674021)8 in octal which
is considerably shorter to write. To convert from octal to binary the reverse substi
tution is equally simple. A table of only 8 octal digits and their
corresponding binary values need be known. This may be committed to
memory very easily.

Octal numbers are frequently used by Computer Programmers as a shorthand
notation for long binary numbers. The conversion from binary to
octal and vice versa is extremely simple and can be done mentally after one has
memorized the proper symbols "0" through "7" for each of the possible
binary triplets (000) through (111).

BINARY TO DECIMAL CONVERSION USING OCTAL
A binary number such as (1101000110111010) can be converted to decimal more
simply by first converting it to octal, then converting the octal number
to decimal. This number is (001 101 000 110 111 010) or (150672)8- We
next convert to decimal as follows.

1. 1x8+5=13

2. 13 x 8 + 0 = 104
3. 104 x 8 + 6 = 838
4. 838 x 8 + 7 = 6711
5. 6711 x 8 + 2 = 53688

Therefore, our original binary number is equal to 53688 in decimal. If you have
had algebra, the reason this works can be given as follows:

(150672)8 = 1 x 85 + 5 x 84 + 0 x 83 + 6 x 82 + 7 x 8 + 2 which can be
expressed as,

((((1 x 8 + 5) x 8 + 0) x 8 + 6) x 8 + 7) x 8 + 2

DECIMAL TO BINARY USING OCTAL
A decimal number such as 72589 can be converted to binary by using octal as
follows. First we convert it to octal by repeated division by eight, keeping track
of all of the remainders obtained.

1st quotient
2nd quotient
3rd quotient
4th quotient
5th quotient
6th quotient

8 72589

9076
1134

141
17
2
o

1
4
6
5
1
2

1st remainder
2nd remainder
3rd remainder
4th remainder
5th remainder
6th remainder

The remainders are then written in reverse order, from bottom to top, to obtain the
octal number (215641)8. Now conversion to binary is simple. We write, (010 001 101
110 100 001), or (100110111010001). The explanation for why this works is similar
to the reverse case already explained but it will not be given here.

- 22 -

CHAPTER 6

THE M Q (MULTIPLIER QUOTIENT REGISTER)

AND THE

DISTRIBUTOR
QUESTIONS:

1. Why are there a double set of numbers on the MQ FLIP-FLOP indicators?
2, How may the MQ REGISTER count up or down?
3, How high can we count in the MQ REGISTER?
4, What is an MQ OVERFLOW?
5, What is a DISTRIBUTOR CYCLE?
6, How does the MQ REGISTER count on a DISTRIBUTOR cycle?
7, Where does the MQ get its name?

The MQ REGISTER is the left-most register on the computer and it is comprised of 3
FLIP-FLOPS, The MQ REGISTER is intended to hold a binary number containing
3 binary digits or bits, Thus, the MQ can hold any binary number from
000 to 111, or, from "0" to "7" in decimal. As the name suggests, the MQ
REGISTER is used for Multiplication and Division,

The DISTRIBUTOR like the MQ REGISTER, is also comprised of three FLIP-FLOPS, but its
purpose is entirely different. Where the MQ is designed to store or hold a
3-bit binary number, the DISTRIBUTOR is not. Instead, it is the
function of the DISTRIBUTOR to distribute the balls which consecutively arrive
at its entry point four different ways,

EXPERIMENT I:
Program DIGI-COMP II as follows:

1. INITIALIZE
2, MULTIPLY = ON
3, AM = MANUAL
4, M = 0000
5, MQ = 111
6, A = 0000000

The indicators on the MQ REGISTER have a double set of numbers, One set is
above the other set. The upper set is used for Multiplication, and the
lower set is used for Division,

Pull the START SWITCH, The first ball will be delivered by the
DISTRIBUTOR to the entry of the MQ REGISTER, Reading the upper set of
numbers, the ball will subtract one from the MQ leaving (110)
and roll over to th~ M4 bit of the MEMORY REGISTER. Since M4
is zero it will direct the marble to drop in the hole to its left and it will then return
to the first surface via the RETURN GUIDE and finally be deposited in the
COLLECTOR GUIDE at the bottom,

7, Pull START 3 more times, waiting and studying the path of each ball until
it reaches the BALL COLLECTOR before triggering another balL

The second ball will be directed by the DISTRIBUTOR to M2, the third ball to
M3, and the fourth ball to M1. These first 4 balls have completed one DISTRIBUTOR
CYCLE, meaning that 4 consecutive balls have been delivered to M4, M2, M3,
and Ml, respectively with the first ball doing the double duty of sub-
tracting one from the MQ REGISTER first.

- 23 -

In other terminology the three DISTRIBUTOR FLIP-FLOPS D1, D2 and D3 are connected
as a "Ring Counter" that counts to four in this case. A ring counter is one
that returns to its starting point after a fixed number of counts.

1. AM = AUTO
2. START

The ACCUMULATOR REGISTER can also be considered as a Ring Counter.

This time the fifth ball will start a second DISTRIBUTOR Cycle by subtracting one
from the MQ obtaining 101 and being delivered to M4 just as the first ball
did. Again, balls 5, 6, 7, 8 will be delivered to M4, M2, M3, and M1
respectively just as in the first cycle of four balls. Let the computer run
in this manner until it turns itself off.

By watching the upper set of numbers in the MQ, you will see that "1" is sub
tracted from the MQ by the first ball of every cycle of four balls. By
watching the lower set of numbers, it will appear that "1" is added to the MQ by the
first ball of every cycle of four balls. Thus, the counting in the MQ will
be as follows:

Upper Set: 111, 110, 101, 100,011, 010,001,000.
Lower Set: 000, 001, 010, 011, 100, 101, 110, 111.

Thus, the MQ REGISTER can count from 7 down to 0 using the upper set of numbers or
from 0 up to 7 using the lower set of numbers. Any upper number of 3 bits can
be deduced from a lower number 3 bits and vice versa by changing each
"0" to "I" and each "I" to "0". A number obtained from a binary number by
reversing the value of the bits is called the One's Complement of the number.

The machine will stop its automatic operation on an MQ REGISTER OVERFLOW. This
will occur when the REGISTER reads 000 in the upper set or 111 in the
lower set. The first ball on the next cycle of four will alter the MQ to 111
in the upper set or 000 in the lower set, but it will not be delivered
to M4. Instead an MQ REGISTER OVERFLOW will direct the ball out of the left side of the
lowest bit of the MQ REGISTER and it will bypass M4 and the TRIGGERING MECHANISM.

EXPERIMENT II:
Set 011 in the MQ REGISTER using the upper numbers. Set D1, D2 and D3 to their
right positions. Pull the START SWITCH.

How many balls are triggered before the computer stops? How many times
is a ball delivered to M4, to M3, to M2, to Ml?

For each subtraction of "1" from the MQ REGISTER, 4 balls are required. As binary
011 represents the decimal number 3, we would expect 3 x 4 or 12 balls to
be required before the REGISTER OVERFLOWED. Ball number 13 should then
cause the overflow.

Each cycle of four balls delivers one ball each to M4, M2, M3, M1 in that order,
assuming D1, D2, D3 are all initially set to the right. Therefore, if there
are 3 cycles, exactly 3 balls will be delivered to each of the elements
M4, M2, M3, M1.

The exact manner in Which the MQ REGISTER is used in multiplication and division
will be described in later experiments.

- 24 -

CHAPTER 7

THE MEMORY REGISTER AND

ADDITION

QUESTIONS:
1. How large a number will the MEMORY REGISTER hold?
2. How do computers "read" the contents of the MEMORY REGISTER into the

ACCUMULATOR?
3. How can we add two binary numbers?
4. Why is the order of the addition of MEMORY REGISTER bits important?
5. What is meant by destructive and non-destructive read out?
6. Why does the ACCUMULATOR REGISTER need to have more bits than

the MEMORY REGISTER?

EXPERIMENT I:
TRANSFERRING THE CONTENTS OF THE MEMORY
REGISTER TO THE ACCUMULATOR REGISTER
Program as follows:

1. INITIALIZE
2. CLEAR
3. M = 1101
4. MQ = 001
5. MULTIPLY = ON
6. START

The computer will trigger 5 consecutive balls then turn itse lf off.

A. The first ball will be delivered by the DISTRIBUTOR to the MQ REGISTER where it
will subtract" 1" from this REGISTER leaving 000 and then be delivered to the
M4 bit of the MEMORY REGISTER. As M4 is a "I", the ball will be
directed to F4 of the ACCUMULATOR REGISTER. This will have the effect of adding
1000 to the ACCUMULATOR obtaining 0001000 in that REGISTER. The ball will
then roll past the START SWITCH triggering a second ball from above.

B. The second ball will be delivered by the DISTRIBUTOR to position M2 of the MEMORY
REGISTER. As this position is a "0", it will drop through the left hole, by-
passing the ACCUMULATOR and ultimately triggering another ball from above.

C. The third ball will be directed to M3. As this bit is "1", the number 100 will
be added to the ACCUMULATOR obtaining 0001100 at this stage. A fourth
ball will then be triggered.

D. The fourth ball will be directed to M1 and 1 will be added to the ACCUMULATOR
obtaining 0001101. A fifth ball will then be triggered.

E. The fifth ball will follow the same route that the first ball took to the MQ
REGISTER. However, in attempting to subtract one from this REGISTER, an over
flow will occur leaving 111 in the MQ and the ball will leave the MQ
to the left, bypassing the gating mechanism. The machine will thus shut itself
off having transferred the number 1101 from the MEMORY REGISTER to the
ACCUMULATOR. The ACCUMULATOR will read 0001101 (13 in decimal).

- 25 -

EXPERIMENT II:
ADDING THE CONTENTS OF THE MEMORY
REGISTER TO THE ACCUMULATOR REGISTER
In the previous operation, the number 1101 in the MEMORY REGISTER was actually added
to 0000000 in the ACCUMULATOR to produce 0001101 in the ACCUMULATOR. To
prove that this sequence of addition is perfectly general, let us continue the following
example:

Step I: Reset D1, D2, D3 to right and reset the MQ to 001 without changing
the ACCUMULATOR or the MEMORY REGISTER.
Pull START.

The number 1101 in the MEMORY REGISTER will now again be added to 0001101 in
the ACCUMULATOR and the answer in the ACCUMULATOR will be,

0011010 = 1101 + 0001101

Notice that the answer 0011010 has the same bit configuration as the number
1101 ex'cept that it is shifted left one place. Why should this be true? What is the
number 0011010 in decimal? Starting from the right in evaluating this
number, we have:

o + 2 + 0 + 8 + .16 + 0 + 0 = 26 which is indeed equal to 13 + 13

EXPERIMENT III:
Step I: Repeat Step I of Experiment II with the AM SWITCH on MANUAL. Pull

ST ART five times in succession attempting to predict before
each new machine cycle what the next ball will do.

We should now have 0011010 + 1101 in the ACCUMULATOR. What is the answer in
binary? Convert this number to decimal. Does the answer in the ACCUMULATOR
require more bits than the MEMORY REGISTER? Why must the bit capacity
of the accumulator exceed that of the MEMORY REGISTER?

EXPERIM'ENT IV:
ADD 14 TO 37
The Program is as follows:

1. ADD
2. A = 0100101
3. M = 1110

In general, we add two numbers to one another in DIGI-COMP II by setting the
larger number in the ACCUMULATOR manually and setting the smaller
number in the MEMORY REGISTER manually. The MQ is then set equal
to 001 because the actual operation being performed is to add the MEMORY
REGISTER to the ACCUMULATOR as many times as indicated by the
number in the MQ REGISTER. Thus, if the MQ is set to 001,
the number in the MEMORY REGISTER, as for this example 14, will be added to the
number in the ACCUMULATOR, (37), exactly one time.

The .smaller of the two numbers used in the addition cannot exceed the
capacity of the MEMORY REGISTER which is (1111) or 15. The larger
of the two numbers cannot exceed the capacity of the ACCUMULATOR which is
(1111111) or 127. Actually, the second number must be smaller than
127, however. This is because the sum of the two numbers cannot exceed 127 with
out causing an ACCUMULATOR overflow.

- 26 -

EXPERIMENT V:
ADDING CONSECUTIVE NUMBERS
A short cut can be used to add consecutive numbers such as 12 + 13 + 14 + 15. Since
4 numbers are to be added enter (100) in the MQ REGISTER.

Step 1: Now program DIGI-COMP II as follows:
1. ADD
2. CLEAR
3. M = 1111 (15)
4. MQ = 100 (4)
5. START

Step 2: When the fifth ball is first triggered, change the MEMORY REGISTER
to 1110 (14) by flipping M1 from "1" to "0".

Step 3: When the ninth ball is first triggered, set the MEMORY REGISTER to
1100 (12).
When the 13th ball is first triggered, flip the MEMORY REGISTER to
1101 (13).
The Machine will shut itself off on the 17th ball with the required sum
in the ACCUMULATOR.

TYPES OF READOUT
According to terminology common to electronic computers, the four balls which
arrive at points M1, M2, M3, M4 "Read" the MEMORY REGISTER in the
process of interrogating each of these SWITCHES M4, M2, M3, M1. They do not happen
to destroy the information in the MEMORY REGISTER in the process, however.
Therefore, we call this type of readout, "Non-Destructive" to distinguish it
from "Destructive" readout which changes or destroys the information
during the process. When multiplication is explained later it will be seen that the
number in the MQ REGISTER is "destroyed" during the operation of "Reading"
it.

Remember, in order to add two numbers, the computer is first Programmed
to ADD then,

A. Set the larger number to be added in the ACCUMULATOR.
B. Next, set the smaller number, which must be less than 16, in the MEMORY

REGISTER.
C. Next, set the MQ REGISTER to (001).
D. Next, pull START.

PROBLEMS:
Add a succession of different numbers of your own choosing to the ACCUMULATOR
verifying the results after each addition.

1. ADD 9 and 67.
2. ADD 47 and 13.
3. Several numbers can be added together using a method similar to that of

Experiment V, by arranging them such that only one MEMORY SWITCH
need be changed for each successive addition. For example, if you wish
to add 2 + 8 + 10 + 12 + 14 they could be added in the order (14 + 12 + 8 +
10 + 2). If these are written in binary form,

o
1
1
1

14

o
o
1
1

12

o
o
o
1
8

o
1
o
1

10

o
1
o
o
2

you can see that only one bit changes at a time. (In programming this problem
you would enter 0101 in the MEMORY REGISTER because there are 5 numbers
to be added.)

- 27 -

4. ADD 9 to 125.

This will cause an ACCUMULATOR OVERFLOW, but since the OVERFLOW SWITCH is
on RUN, the computer will complete the addition even though the result is wrong.

What a;J.swer do you get when you add 9 = (1001) to 125 = (1111101)? The
correct answer is (10000110) but this is an 8-bit number which is
too large for the ACCUMULATOR. We might expect that the answer would be
(0000110) with the eighth (or high order) bit lost. Is this true?

You can still add numbers which cause an OVER FLOW if you realize it and add 27 or
128 to the ACCUMULATOR mentally.

RULES OF BINARY ADDITION
Throughout this chapter, you have been observing DIGI-COMP II add in binary
arithmetic. Let us review the rules that you have been using.

It is very easy to add two binary numbers. THERE ARE ONLY FIVE RULES TO
REMEMBER:

0+0=0
0+ 1 = 1
1 + 0 = 1
1 + 1 = 0 with a "I" carry (read: one, zero; 10)

RULE 1
RULE 2
RULE 3
RULE 4
RULE 5 1 + 1 + 1 = 1 with a "I" carry (read: one, one; 11)

Compare this with the decimal addition table! A few examples are:

1+0=1 2+3=5 3+6=9
8 + 4 = 2 with a "I" carry (12).
9 + 7 = 6 with a "1" carry (16).

In fact, there are 65 addition rules in the decimal system!

As you know when two decimal numbers are added, the "carry" from one column
is added to the digits of the next column. For example:

carry
----. 111 976

+ 425
1401

Exactly the same thing is done in the binary system. For example:

carry ----•• 1111
11011

+ 10110
110001

In the binary system the "CARRIES" FROM ONE COLUMN ARE ADDED TO THE
"BITS" OF THE NEXT COLUMN.

NOTE that when more than three ones are added, there will be more than one
carry. As an example:

carry ~ (1) (1)
---'(1)(1)

1
o
1

+ 1
(101)2

- 28 -

1
1
1
1
o

or
3
1
3

_LL
(10 ho

CHAPTER 8

MUL TIPLICATION
OF BINARY NUMBERS ON

DIGI-COMP II
QUESTIONS:

1. How does DIGI-COMP II perform Multiplication?
2. For speed of Multiplication, which number should be placed in the MQ

REGISTER and which one should be placed in the MEMORY REGISTER?
3. How does a number change in binary when it is doubled or

quadrupled?
4. What is the function of the "Multiplier" vs. the "Multiplicand"?
5. Can an OVERFLOW occur during Multiplication?
6. Why does the 7-bit capacity of the ACCUMULATOR equal the 3--bit

capacity of the MQ REGISTER plus the 4-bit capacity of the MEMORY REGISTER?
7. How may "MULTIPLY-ADD" be performed?
8. Can an OVERFLOW occur during MUL TIPL Y-ADD?
9. What is meant by "Modulo" arithmetic?

10. How does an electronic computer MULTIPLY using SHIFTING?

Multiplication is accomplished in DIGI-COMP II by adding the number in the MEMORY
REGISTER to the ACCUMULATOR REGISTER as many times as the value of the
number placed in the MQ REGISTER. This is simply repeated Addition.
For instance if you wish to multiply 9 x 2, 9 = (1001) is added to the ACCUMULATOR
2 = (010) times. Four balls are required each time the MEMORY REGISTER
is added to the ACCUMULATOR.

The first ball on each cycle of 4 balls subtracts one from the MQ REGISTER and
asks if the MQ were zero before subtraction. If the answer is "yes",
the computer turns itself off without further action, as a result
of any MQ REGISTER OVERFLOW. If the answer is "no", however, this ball then goes to
M4 of the MEMORY REGISTER and asks if (1000), or 8, shall be added to the
ACCUMULATOR. In this case as M4 = 1 the answer is "yes" and (1000) is added
to the ACCUMULATOR. The ball then triggers the next ball from the INPUT GUIDE.

The second ball on each cycle of 4 is directed to M2. If M2 = 1 the number 2 = (0010)
is added to the ACCUMULATOR. In this case M2 = 0 so the ball drops through
the hole and thereby avoids the ACCUMULATOR, but it returns to the
first surface via the RETURN GUIDE and triggers a third ball in the cyc 1.e of four.

The third ball is directed to M3 which in this case is also zero. Therefore, the
number 4 = (0100) is not added to the ACCUMULATOR but a fourth ball is
triggered from the INPUT GUIDE.

The fourth ball is directed to Ml which, in this case, is a one. The
number one is therefore added to the ACCUMULATOR. Thus, for every four balls, if
9 = (1001)2, is in the MEMORY REGISTER, an "8" and a "I" will be
added to the ACCUMULATOR because the bit worth "8" and the bit worth "1"
are both "1". However, neither "4" nor "2" are added because these bits are "0",

On each cycle of four balls, the first ball subtracts one from the MQ unless
the MQ is zero. For 2 x 9, the MQ is originally (010)2, and the first
ball and the fifth b.all subtra.ct one from the MQ le~vi~g (001)2.' and then (000)2'
The ninth ball begms the thud cycle of four, but fmdmg the MQ equal to all
zeros it subtracts one leaving (111)2 producing an MQ OVERFLOW which turns
the computer off.

The multiplication of 2 = (010) times 9 = (1001) is i!lustrated in Figure 4 and
Figure 5.

Notice that the answer to 2 x 9 or (10)2 x (1001 h is
(0010010)2 in the ACCUMULATOR. This bit configuration is the
same as that of 9, but is shifted left one place.

- 29 -

EXPERIMENT I:
MULTIPLYING AND SHIFTING
Program DIGI-COMP II to multiply 4 x 9 as follows:

1. CLEAR
2. MULTIPLY
3. M = 1001
4. MQ = 100

Notice that 4 x 9 is (0100100) or 36 in the ACCUMULATOR
which is again the same bit configuration as 9 = (1001),
but shifted left two places.

In general, if a binary number is multiplied by a power of 2, such as 2, 4, 8, 16, 32,
etc., the resulting number is shifted left 1,2,3, 4, 5, etc., places respectively. This is
because these powers are represented by (10)2, (100 h, (1000)2, (10000)2,
etc., in binary and just as in base ten multiplying by 10, 100, 100(f, 10000,
etc., shifts the number left 1,2,3,4,5, etc., places respectively with zeros trailing
to the right.

EXPERIMENT II:
SPEEDING UP THE MULTIPLICATION OPERATION
In multiplying two numbers such as 5 x 7 the amount of work that the computer
must do can vary depending upon how a problem is programmed.
For instance, program DIGI-COMP II as follows:

1. CLEAR
2. MULTIPLY
3. M = 0111
4. MQ = 101
5. START

Count the number of marbles used in the calculation.

Now, perform the same multiplication, but this time put the 7 in the MQ and the 5
in the MEMORY REGISTER. Again count the number of balls triggered. Were
they the same? Why not?

When 5 is the multiplier in the MQ REGISTER, five additions of 7 are performed
to accomplish the multiplication, but when 7 is the multiplier in the
MQ, seven additions of 5 are performed. In the first case,S cycles of 4 balls are re
quired plus one more ball to discover that the MQ is zero which makes a
total of 21 balls. In the second case, 7 cycles of 4 balls plus one are
required which makes a total of 29 balls. For speed of multiplication, then, the
smaller number should be placed in the MQ and the larger number in the

MEMORY REGISTER.

EXPERIMENT III:

THE LARGEST POSSIBLE NUMBERS
THAT CAN BE MULTIPLIED
Program DIGI-COMP II to muitiply and also CLEAR the ACCUMULATOR. Multiply
the largest possible number :hat can be put in the MQ by the largest possible
number than can be put in the MEMORY REGISTER. What is the result
in the ACCUMULATOR? Is it correct? Did an OVERFLOW occur?

The largest number that can be placed in the MQ is (111)2 = 7. The
largest number than can be put in the MEMORY REGISTE~ is (1111)2 = 15. Therefore,
the answer should be 7 x 15 = 105. In binary, 105 is (1101001).

As 105 in binary does not require more than 7-bits, no ACCUMULATOR OVERFLOW
results and the answer is correct.

- 30 -

In base ten, if any 3 digit number is multiplied by any 4 digit number,
the answer will never require any more than 7 digits to represent. Similarly, in binary
the product of any 3-bit number by any 4-bit number requires no more than 7-bits
to represent. The reason that the ACCUMULATOR was designed to contain 7-bits
is that its size must be equal to the size of the MQ, 3-bits, plus the
size of the MEMORY REGISTER, 4-bits. As a result of the choice of this size,
no ACCUMULATOR OVERFLOW can occur during multiplication if the
ACCUMULATOR is initially set to zero before the operation is begun.

EXPERIMENT IV:

MULTIPLY-ADD OPERATION
Compute 4 x 10 + 9. The program for this is:

1. MULTIPLY
2. M = 1010
3. MQ = 100
4. A = 0001001
5. START

The computer will now multiply four times ten and add the result to nine. As
previously indicated, DIGI-COMP II performs multiplication by repeated
addition. Therefore, 10 = (1010) will be added to the ACCUMULATOR
4 = (100) times. But the ACCUMULATOR initially contains the number 9 = (1001)
and therefore the answer will be (4 x 10 + 9) or 49 = (0110001).

The MULTIPLY-ADD function then gives us an easy means of having the computer
convert a decimal number such as 49 to binary.

Let us try another example.

Convert 57 to binary using the computer to help perform the conversion.

EXPERIMENT V:

CONVERTING DECIMAL BINARY AUTOMATICALLY
To convert 57 to binary, you can think of it as being 5 x 10 + 7. Program
DIGI-COMP II for this problem and the ACCUMULATOR will turn up the
binary equivalent of 57.

The program is:
1. MULTIPLY
2. M = 1010
3. MQ = 101
4. A = 0000111
5. START

What is the largest decimal number that can be converted to binary by this
method? Why?

As the MQ REGISTER can hold a maximum size number of 7 = (111)2, the largest
number which can be converted to binary by the method is 79. However,
it is possible to convert still larger numbers by separating the work into two
parts. The number 123 can be converted by expressing it as 64 plus 59,
for example, and using the computer to convert the 59. In this case 59 is converted
by computing (5 x 10 + 9) obtaining (0111011)2' Then 64 = (1000000)2
is mentally added to the result obtaining:

123 = (1111011)2

- 31 -

EXPERIMENT VI:

PROBLEM: COMPUTE (5 x 13) + (4 x 14)
The technique is to multiply 4 x 14, then, without clearing the ACCUMULATOR, multiply
5 x 13. It will be automatically added.
The program is:

1. CLEAR
2. MULTIPLY
3. M = 1110
4. MQ = 100
5. START
6. PAUSE
7. MULTIPLY
8. M = 1101
9. MQ = 101

10. START

Check your answer by doing the program in decimal and converting to binary,
or directly as follows:

4 x 14 = (100)2 x (1110)2 = (0111000)2
5 x 13 = (101)2 x (1101)2 = (1000001 h
5 x 13 + 4 x 14 = (1000001)2 + (0111000)2
5 x 13 + 4 x 14 = (1111001)2

EXPERIMENT VII:

COMPUTE (6 X 13 + 5 X 15)
Program this problem the same as Experiment 6
except for the values of M and MQ. If the result is larger than the
ACCUMULA TOR can hold, this may be detected by performing the
operation with the OVERFLOW SWITCH on HALT.

Let us summarize the simple rules of binary multiplication. Binary multiplication
is carried out in a way similar to decimal multiplication. The binary
multiplication table is:

This is even simpler than binary addition!
To multiply in the binary system you multiply by each bit of the multiplier and
add. This is the same as in the decimal system.

For example:

x

In binary:

1 101
1 1 0 1
1 10 1

0000
1 10 1

1 101
10101001

- 32 -

In decimal:

13
x 1 3 ---

39

1 3

169

CHAPTER 9

COMPLEMENT ARITHMETIC AND

SUBTRACTION
QUESTIONS:

1. What is the "1 's" COMPLEMENT of a binary number?
2. What is the "2 's" COMPLEMENT or more simply, the complement of a

binary number?
3. How does DIGI-COMP II obtain the COMPLEMENT of a binary number?
4. If the COMPLEMENT of a binary number is added to the original number,

what is the result?
5. If the COMPLEMENT of a smaller number is added to a larger number, what

does the result represent?
6. How may subtraction be performed by COMPLEMENT addition?
7. What is the COMPLEMENT of zero? Of 1, 2, 3, etc.?
8. What is the COMPLEMENT of the COMPLEMENT of any number?
9. How are negative numbers r~presented in COMPLEMENT arithmetic?

10. What should the number (1000000)2 represent in COMPLEMENT arithmetic?
11. How do you make an automatic marOle counter?
12. Could we have base ten COMPLEMENT arithmetic?
13. Why is COMPLEMENT arithmetic preferred to true subtraction and negative

numbers?

If the number 25 were placed in the ACCUMULATOR, it would be represented
by 0011001 as this register in DIGI-COMP II has 7-bits.

By definition, the "ONE'S COMPLEMENT" of a binary number in a register is that
number which, if added to the REGISTER, would produce all one's in the register.
The ONE'S COMPLEMENT of 25 in the ACCUMULATOR REGISTER would be
1100110 as this number plus 0011001 would equal 1111111.

The ONE'S COMPLEMENT of a binary number in a REGISTER may be obtained quite
simply by the following rule. Change every bit in the register to its opposite value.
Thus, if we change every bit of 0011001 to its opposite value we obtain 1100110
which is its ONE'S COMPLEMENT.

EXPERIMENT I:
THE ONE'S AND TWO'S COMPLEMENT
To illustrate using DIGI-COMP II program as follows:

1. INITIALIZE
2. COMPLEMENT = ON
3. AM = MANUAL
4. A = 0011001
5. START

A ball will be triggered to enter CF1, the FIRST COMPLEMENT FLIP-FLOP from
left to right and deliver the ball to the hole at its right. The ball will then drop
to the hole second surface and flip T1, T2, T3, T4, T5, T6, which are called
the ACCUMULATOR MODE FLIP-FLOPS, from their normal left positions to their
right positions. It will then return to the first surface via the RETURN GUIDE and
be collected in the COLLECTOR GUIDE. The ACCUMULATOR is now said to be
in the COMPLEMENT MODE rather than the ADD MODE because the MODE FLIP-FLOPS
are to the right rather than to the left.

Pull START again.

The second ball will enter CF1 and flip it from the right position back to its original
left position. Having flipped CF1, the ball will enter the ACCUMULATOR at Al and
flip every bit of the ACCUMULATOR to its opposite values. In other words, the
ACCUMULATOR now contains 1100110 which is the ONE'S COMPLEMENT of
0011001. The second ball also flips CF2 to its opposite position.

- 33 -

Normally, if a ball flips an ACCUMULATOR FLIP-FLOP from "1" to "0", it carries
~ "1" to the next FLIP-FLOP, but if it flips an ACCUMULATOR FLIP-FLOP
from "0" to "1" it does not. When the ACCUMULATOR is in the COMPLEMENT
MODE, a ball is directed to the next FLIP-FLOP in both cases. This is because
the corresponding MODE FLIP-FLOP directs any ball exiting to the right,
back to the next lower FLIP-FLOP.

Pull START again.

The third ball will follow the same path as the first ball flipping CF1 to the
right, but this time the MODE FLIP-FLOPS, T1 through T6, will be flipped back
to the left returning the ACCUMULATOR to the ADD MODE.

Pull START again.

The fourth ball now flips CF1 back to its original (left) position, adds one to the
ACCUMULATOR and flips CF2 back to its original (right) position. The
ACCUMULATOR now contains (1100110) + (1) = (1100111). This number
is called the TWO'S COMPLEMENT of the original number, (0011001).

By definition, the TWO'S COMPLEMENT of a given binary number in the ACCUMULATOR
is that number which, if added to the given number, would produce all zeros with
an ACCUMULATOR OVERFLOW. The OVERFLOW takes place as a result of an
attempt to carry a one to the next higher, non-existent bit. The TWO'S COMPLEMENT
of a binary number in a register may be simply obtained by first obtaining the
ONE'S COMPLEMENT, then adding one to the result.

EXPERIMENT II:
If we add the number (1100111) to our original binary number (0011001), we obtain
to 8-bits (10000000). But we have only 7-bits in the ACCUMULATOR and hence
the result is (0000000) with an ACCUMULATOR OVERFLOW. Let us illustrate
this using DIGI-COMP II.

Place all of the marbles in the top and program it as follows:
1. COMPLEMENT = OFF
2. COUNT = ON
3. OVERFLOW = HALT
4. AM = AUTO
5. START

The ACCUMULATOR will add one every few seconds until an ACCUMULATOR
OVERFLOW occurs. As the OVERFLOW SWITCH is set to HALT, the computer will
turn itself off when the overflow occurs.

Coun t the number of balls that are in the COLLECTOR GUIDE when the OVERFLOW
occurs. How many are there?

There should be exactly 25 balls in the COLLECTOR GUIDE as 25 plus the COMPLEMENT
of 25 should give zero with an ACCUMULATOR OVERFLOW.

EXPERIMENT III:
This technique may be used to make DIGI-COMP II count out a desired number of
balls. Let us give another example to illustrate this point. Suppose it were desired
to have the computer count out 9 balls.

1. INITIALIZE
2. A = 0001001
3. COMPLEMENT = ON
4. START
5. PAUSE
6. COMPLEMENT = OFF
7. OVERFLOW = HALT
8. COUNT = ON
9. START

- 34 -

Place the four balls in the COLLECTOR GUIDE back up in the INPUT GUIDE. The
computer will now count until an OVERFLOW occurs. As the OVERFLOW SWITCH is in its
HAL T position, the computer will shut itself off when OVERFLOW occurs. Exactly
9 balls will be counted out as 9 plus the TWO'S COMPLEMENT of 9 are zero with an
ACCUMULA TOR OVERFLOW.

From now on, we will refer to the TWO'S COMPLEMENT of a number in a register as
the "COMPLEMENT". This is because the TWO'S COMPLEMENT, or the
COMPLEMENT, is much more important to the operation of the computer than
the ONE'S COMPLEMENT.

The fo11owing is a list of the tasks DIGI-COMP II performs when it develops the
COMPLEMENT of a binary number in the ACCUMULATOR.

A. The MODE FLIP-FLOPS are flipped from their normal ADD positions
(to the left) to their COMPLEMENT positions (to the right) by the first ball.

B. The ONE'S COMPLEMENT of the ACCUMULATOR is next obtained by the
second ba11 by flipping each bit in the ACCUMULATOR to its opposite value.

C. The MODE FLIP-FLOPS are next flipped back from their COMPLEMENT
positions (to the right) to their ADD positions (to the left) by the third ba11.

D. One is added to the result in the ACCUMULATOR by the fourth ball.

EXPERIMENT IV:·
PROBLEM: FIND THE COMPLEMENT OF 12.
To do this:

1. COMPLEMENT
2. A = 0001100
3. START

The computer will automatica11y trigger four consecutive ba11s and develop the
COMPLEMENT of 12 in the ACCUMULATOR in binary. This COMPLEMENT will
be the ONE'S COMPLEMENT of 12, which is (1110100). Let us now add "12"
to the ACCUMULATOR and see if the result is zero.

1. ADD
2. M = 1100
3. MQ = 001
4. START

Five ba11s will be triggered, a11 "O's" will be developed in the ACCUMULATOR,
and an ACCUMULATOR OVERFLOW will occur. The computer will stop because the
addition is complete, not because an ACCUMULATOR OVERFLOW occurred. This
because the OVERFLOW SWITCH is on RUN, not on HALT.

EXPERIMENT V:
SUBTRACT 9 FROM 15
Now let's add 15 to the COMPLEMENT of 9. If 9 were added to the
COMPLEMENT of 9 we would obtain zero. As 15 may be represented as
9 + 6, if 15 were added to the COMPLEMENT of 9 we would expect the result
to be:

(COMPLEMENT of 9) + 9 + 6 = 0 + 6 = 6

In other words, 15 plus the COMPLEMENT of 9 would equal (15 - 9) or 6!
Thus, with COMPLEMENT arithmetic, subtraction can be changed to addition.
We sha11 illustrate this point with further experiment with DIGI-COMP II.

Now to add 15 to the COMPLEMENT of 9, the program is:
1. A = 0001001
2. COMPLEMENT
3. START
4. PAUSE
5. MQ = 1111
6. ADD
7. START

- 35 -

The ACCUMULATOR will develop 6 = (0000110) with an OVERFLOW occurring
in the process. As the OVERFLOW SWITCH is on RUN, the computer will not halt
when the OVERFLOW takes place.

Let us review subtraction briefly. To compute (15 - 9) we add the COMPLEMENT
of 9 to 15. From now on if we place a bar above a number, as for example 9,
this will mean the complement of that number. Using this notation, 15 plus the
COMPLEMENT of 9 would be written:

15 + 9
It should be clear that:

15 - 9 = 15 + 9 = 6

In other words, 15 minus 9 is the same as 15 plus the complement of 9.

EXPERIMENT VI:
WHAT IS THE COMPLEMENT OF 0, 1, 2, 31
Program DIGI-COMP II for COMPLEMENT according to the chart on the front of
the computer and enter each digit to find the answers.

If you followed the program correctly, the following answers were obtained:

o = (0000000)2

1 = (1111111)2

2 = (1111110)2

3 = (1111101)2

Notice that the COMPLEMENT of "0", called "0", is the same as the number itself,
namely "0".

What is the COMPLEMENT of the COMPLEMENT of 23? of 47? or 52?

Program DIGI-COMP II and enter each number in turn. To check the answers,
RE-COMPLEMENT them and see if you get the original number.

The answers to these questions are as follows:

23 = (0010111)2, 23 = (1101001)2, 23 = (0010111)2

47 = (0101111)2, 47 = (1010000)2, 47 = (0101111)2

52 = (0110100)2, 52 = (1001011)2, 52 = (0110100)2

It will be noticed in every case that the COMPLEMENT of the COMPLEMENT
of a number is equal to the original number.

The COMPLEMENT of a number behaves in every respect, that we have considered
thus far, as the negative of a number behaves.

A. The COMPLEMENT of "0" is "0". The negative of "0" is "0".
B. The COMPLEMENT of the COMPLEMENT of a number is the original

number, just as the negative of the negative of a number is the original number.
C. A number plus its COMPLEMENT is zero just as a number plus its negative

is zero.
D. A number plus the COMPLEMENT of another number is the difference of the

two numbers just as a number plus the negative of another number is the
difference of the two numbers.

It is, therefore, possible to represent the negative of a number by its COMPLEMENT
and accomplish subtraction by the same circuitry that is used for addition. However,
some further care needs to be exercised. The complement of 23 called 23 was found
to be (1101001). If this number were read as a positive number, we would call it:

- 36 -

64 32 16 8 4 2 1

1 1 0 1 0 0 1)2

64 + 32 + 0 + 8 + 0 + 0 + 1 = 105

Yet, of course, the negative of 23 is not 105.

We avoid this inconsistency as follows:

If we wish the ACCUMULATOR to represent both positive and negative numbers,
we consider that any number with a "Z" in the high order position is a
negative number, and any number with a "0" in the high order position is
positive. Thus, the number 1001110 is a negative number in COMPLEMENT form
because its high order, or left-most bit, is a "I".

EXPERIMENT VII:
WHAT NEGATIVE NUMBER
DOES 1001110 REPRESENT?
While the computer is still set up for COMPLEMENTING, place this number
in the ACCUMULATOR and START.

DIGI-COMP II will develop the COMPLEMENT of 1001110 which is 0110010.
This number may now be evaluated as a positive number because the high
order bit is "0".

32 + 16 + 0 + 0 + 2 + 0 = 50

Therefore, 1001110 must be the COMPLEMENT representation for the
negative of 50, or for -50.

EXPERIMENT VIII:
What is the highest positive number that can be represented if both positive and
negative numbers are to be considered in a 7-bit ACCUMULATOR.

To answer this, we must ask - what is the highest number that can be represented by
a 7-bit number with a "0" in the high order position?

The answer is 0111111 which is:

32 + 16 + 8 + 4 + 2 + 1

(0 1 1 1 1 1 1)2

32 + 16 + 8 + 4 + 2 + 1 = 63

EXPERIMENT IX:

WHAT IS 63?
Or, in other words, what is the representation for -63 to 7-bits in
COMPLEMENT form? Use DIGI-COMP II to obtain this result by placing 0111111
in the ACCUMULATOR and PROGRAMMING to COMPLEMENT.

The answer is (1000000) + 1 or (1000001)

It is important to realize that we can either consider that the ACCUMULATOR on
DIGI-COMP II represents positive numbers only, going from "0" to "127", or we
can consider that the ACCUMULATOR represents positive and negative numbers
going from -63 to +63. In the first case the limits 0 to 127 are represented by
(0000000) to (1111111) in binary. In the second case the limits of -63 to +63 are
represented by (1000001) to (0111111)2' Thus, if we add "I" to "-63", for
example, we obtain (1000010)2 which is 62. Therefore, (1000010)2 represents
a "-62" as we would expect.

- 37 -

When considering that the ACCUMULATOR represents both positive and negative
numbers, a positive number may be evaluated directly to determine its decimal equivalent.
A negative number must first be complemented, however, before we may evaluate it.
If a number in the ACCUMULATOR has a "1" bit in its high order position (bottom bit
on DIGI-COMP II), we infer that it is a negative number and we must COMPLEMENT
the number to determine its value.

If the ACCUMULATOR is considered to represent both positive and negative numbers,
what are the decimal equivalents of:

(1000101)2? and (1001001)2?

To find the answer, place each of these numbers in the ACCUMULATOR and
then COMPLEMENT them.

The COMPLEMENTS of the numbers are:

-(0111011)2, -(0100000)2, -(0101011)2, -(0110111)2, or

32 16 8 4 2 1

-(0 1 1 1 0 1 1) = -61
-(0 1 0 0 0 0 0) = -32
-(0 1 0 1 0 1 1) = -43
-(0 1 1 0 1 1 1) = -55

EXPERIMENT X:

FIND THE COMPLEMENT OF (1000000)
Strangely enough, the COMPLEMENT of 1000000 = 1000000 or -1000000 = 1000000.

In algebra if a number "X" satisfies the equation -X = X, then it is necessary that
X = O. Could 1000000 be another way to represent zero? What would be the answer
if we added 1000000 to 1? to 2? to 3? We would obtain 1000001, 1000010, and (1000011).
As these numbers have a "1" in their high order bit, we must COMPLEMENT them to
determine their value. COMPLEMENTING we obtain, 63, 62, 61. Therefore, 1000000 acts
like -64 when we add it to 1, 2, 3. Suppose we were to add -1 to -63 by the rules
of binary arithmetic. What would we obtain?

1 = 0000001 therefore, by COMPLEMENTING (-1) = 1111111, 63 = 0111111 therefore,
by COMPLEMENTING, (-63) = 1000001 adding we obtain 1000000 plus an OVERFLOW.

For the reasons given it is perhaps most logical to interpret 1000000 as -64. There
is no +64 using positive and negative numbers with a 7-bit ACCUMULATOR, however.
Moreover, the COMPLEMENT of (-64) gives the erroneous answer of (-64). For our
purposes, we will call this number (-64) if we encounter it recognizing, however,
that inconsistencies can arise by using it.

We have shown how to compute (A - B) when "A" is less than or equal to the largest
number, 1.!2, which can be represented in the MEMORY REgISTER. The answer is computed
as (A + B), or A plus the COMPLEMENT of B, where B means the COMPLEMENT of B.

Suppose "A" is larger than 15, however. Then, although it is possible to place "B"
in the ACCUMULATOR and COMPLEMENT "B", "A" may not next be added as "A"
exceeds the size of the MEMORY REGISTER.

There is an alternate way in which (A - B) can be computed in this case to avoid this
problem if "B", generally the smaller of the two numJ>ers, is less than or equal to 15.
To compute (A - B) in this case we compute (B + A) then take the COMPLEMENT
of the result. This is equivalent to recognizing that (A - B) is the negative of (B - A).
Thus, we may write:

or

(A - B) = -(B - A)

(A-B)= (B+A)

which means that we may compute (A - B) by adding "B" to the COMPLEMENT of
"A", then taking the COMPLEMENT of the result.

- 38 -

EXPERIMENT XI:
COMpUTE (35-13)

1. COMPLEMENT
2. A = 0100011 (35)
3. START
4. PAUSE
5. ADD
6. M = 1101
7. START
8. PAUSE

(This produces the negative of the desired answer)
9. COMPLEMENT

10. START
-(13 - 35) or (35 - 13) will now appear in the ACCUMULATOR.

The two methods of performing subtraction may be summarized as follows:
A. Compute (A - B) when" A" is less than or equal to 15, the maximum

number the MEMORY REGISTER will hold.

- Place "B" in the ACCUMULATOR.
- COMPLEMENT the ACCUMULATOR.
- Place" A" in the MEMORY REGISTER.
- ADD the MEMORY REGISTER to the ACCUMULATOR.

B. Compute (A - B) when "B" is less than or equal to 15.
- Place" A" in the ACCUMULATOR.
- COMPLEMENT the ACCUMULATOR.
- Place "B" in the MEMORY REGISTER.
- ADD the MEMORY REGISTER to the ACCUMULATOR.
- COMPLEMENT the ACCUMULATOR.

The question naturally arises, "could we have base ten complement arithmetic?"
The answer to this question is "yes". In base ten arithmetic the 9's COMPLEMENT
is analogous to the "l's" COMPLEMENT in binary. Let us assume we have a 5 digit
base ten register, then the 9's COMPLEMENT of 342 would produce all 9's in the
register. The 9's COMPLEMENT of 342 (or 00342) for a 5 digit register is 99657.

The ten's COMPLEMENT of 342 is that number which would produce all O's in the
register if it were added to 342 with an OVERFLOW attempt. It may be verified that
in base ten the ten's COMPLEMENT of a number is its 9's COMPLEMENT plus 1.
Thus, the ten's COMPLEMENT of 00342 is 99657 + 1 = 99658. Notice that:

99658
+ 00342

100000 = 00000 plus an OVERFLOW.

In base ten (8123 - 7645) may be computed by first obtaining the 9's
COMPLEMENT of 07645 which is 92354, then adding 1 to obtain the COMPLEMENT
92355, then adding (8123 + 92355).

08123
+ 92355

100478 = 00478

COMPLEMENT arithmetic is used in computers instead of extra circuitry which would
otherwise be required for true negative arithmetic. In the case of base ten, the
high order "digit" or left-most digit must be reserved to indicate the algebraic sign
of the number just as in binary. In binary if the high order bit were a "1", the number
was considered to be negative. In base ten, if the high order digit is a "9", the
number is considered to be negative. In base ten just as in binary, a negative number
must be COMPLEMENTED to interpret its value. .

- 39 -

CHAPTER 10

DIVISION
OF BINARY NUMBERS ON
DIGI-COMP II

QUESTIONS:
1. How is division performed on DlGI-COMP II?
2. What is the largest dividend and divisor that can be used?
3. What is the largest quotient that can be developed?
4. How can the DIVIDE command be further automated?
5. What happens in division if the divisor does not divide the dividend

a whole number of times?
6. How can both the quotient and the remainder be calculated if the

division results in a non-zero remainder?

Division is performed on DIGI-COMP II by repeated subtraction. To see how
many times the divisor will divide (or go into) the dividend, the dividend is
placed in the ACCUMULATOR, the divisor is placed in the MEMORY REGISTER,
and the computer is made to count in the MQ REGISTER the number of times that
the divisor can be subtracted from the dividend.

In the MQ or MULTIPLIER QUOTIENT REGISTER, the lower set of numerals is used
for division. It will be recalled that the upper set of numerals was used for multiplication.

As subtraction is actually performed by COMPLEMENT ADDITION on DlGI-COMP II,
a somewhat more accurate description of division may be given as follows. The
dividend is first placed in the ACCUMULATOR REGISTER and is then COMPLEMENTED.
This gives the negative of the dividend in the ACCUMULATOR. The divisor is then
placed in the MEMORY REGISTER and the MQ REGISTER is set to zero. The
OVERFLOW SWITCH is then set to HALT and the DIVIDE operation is begun by pulling
START.

On each cycle of 4 balls the MEMORY REGISTER, containing the divisor, is added
to the ACCUMULATOR, containing the negative of the dividend, and the count of
how many such additions have thus far been performed is increased by one in the
MQ REGISTER. The operation stops when the ACCUMULATOR OVERFLOWS (goes
from minus to zero).

EXPERIMENT I:
DIVIDE 45 BY 9
To do this, the program is:

1. A = 0101101
2. M = 1001
3. DIVIDE

The machine will halt on an ACCUMULATOR OVERFLOW with the answer 5 = (101)2
appearing in the MQ REGISTER on the lower set of numerals. Notice that on each
cycle of 4 balls the MQ is increased by one by the first ball of the group if the lower
set of numerals are read.

- 40 -

EXPERIMENT II:
DIVIDE 52 BY 13
1. A = 0110100
2. M = 1101
3. DIVIDE

DIGI-COMP II performs division by repeated addition of the divisor to the
COMPLEMENT, or negative, of the dividend until an ACCUMULATOR OVERFLOW
stops the machine. The quotient is obtained by counting the number of additions
required. Remember that when both positive and negative numbers are considered to be
represented in the ACCUMULATOR, the limits of numbers that may be represented are
from -63 to +63. Therefore, it would be expected that the dividend could not be greater
than +63 and have the division be correct. The division does corne out correct following
the same procedure, however, even for dividends greater than +63.

EXPERIMENT III:
DIVIDE 78 BY 13
1. A = 1001110
2. M = 1101
3. DIVIDE

The computer should add 13 to the COMPLEMENT of 78 exactly 6 times before the
machine halts on an ACCUMULATOR OVERFLOW. The quotient of 6 will appear
in the MQ REGISTER.

Strictly speaking, DIGI-COMP II performs division automatically only in the case
that the divisor goes into the dividend a whole number of times. With additional
manual assistance, division may be also performed in the case where both a quotient
and a remainder need be obtained.

EXPERIMENT IV:
HOW TO HANDLE REMAINDERS
To illustrate how division may be performed to obtain a quotient and a remainder,
let us divide 50 by 11. The computer will be made to add 11 to the COMPLEMENT.
or negative, of 50 as many times as required to obtain an ACCUMULATOROVERFLOW.
This will be 5 times as 55 = 5 x 11 is larger than 50; but 44 = 4 x 11 is smaller. The
machine having recognized that it requires 5 additions of 11, will stop on an
OVERFLOW part way through the fifth addition of 11. It will be necessary to
complete this fifth cycle of four balls manually.

Having added 11 to the ACCUMULATOR 5 times, the result in this Register will be
55 - 50 = 5. The correct remainder, however, is 11 minus this number or 11 plus the
COMPLEMENT of this number. Therefore, it will next be necessary to COMPLEMENT
the ACCUMULATOR and to add 11 to obtain the true remainder. The correct quotient
is one less than the number appearing in the MQ REGISTER.

To illustrate this problem, program DIGI-COMP II as follows:

Step 1: 1. A = 0110010
2. M = 1011
3. DIVIDE

- 41 -

Step 2: When the computer stops on an ACCUMULATOR OVERFLOW, set the
AM SWITCH to MANUAL, and pull START as many times as required to
return the DISTRIBUTOR elements Dl, D2, D3 to their correct initial
positions, all to the right. This completes the fifth cycle.

Step 3: Turn the MUL TIPL Y SWITCH to its OFF position, turn the OVERFLOW
SWITCH, back on RUN then COMPLEMENT the ACCUMULATOR.

We are now ready to add 11 to the COMPLEMENT of the ACCUMULATOR.
As the quotient in the MQ REGISTER is one too large, we may also subtract
one from the MQ at the same time.

Step 4: Manually flip every element in the MQ REGISTER to its opposite position.
Now the 5 = (101) which appeared on the lower numerals will appear on the
upper numerals. Also, the first ball on the next cycle of four will subtract one
from the MQ if we consider the top set of numerals.

Step 5: Turn the MUL TIPL Y SWITCH to its ON position and pull START four
consecutive times. This will add the 11 to the COMPLEMENT of the ACCUMULATOR.

Step 6: We may now read the quotient in the MQ using the top numerals and the remainder
in the ACCUMULATOR.

Although the steps necessary to obtain both the quotient and the remainder in division
are numerous and complicated, they can easily be remembered if the principles
involved are clearly understood. These principles are summarized as follows:

A. The divisor is placed in the MEMORY REGISTER and it is added to the
COMPLEMENT, or negative, of the dividend as many times as required to
make the computer halt on an ACCUMULATOR OVERFLOW. The MQ REGISTER,
which is initially set to zero, counts the addition performed.

B. The last cycle must be completed manually by pressing START a
sufficient number of times to return Dl, D2, D3, in the DISTRIBUTOR to their
correct initial positions, all to the right.

C. The MQ REGISTER must be reduced by one to obtain the quotient in the
process of adding the divisor back into the COMPLEMENT of the ACCUMULATOR.
The ACCUMULATOR will then contain the remainder.

Complicated as this procedure sounds, an electronic computer follows a similar but
even more complicated sequence procedure to perform division. However, the division
is completely automatic and the user need not be concerned with the process. Just as in
the procedure followed in DIGI-COMP II, repeated subtraction is performed by
COMPLEMENT ADDITION but the ACCUMULATOR is shifted in the process to shorten
the number of cycles and the time required. Again, as with DIGI-COMP II, overdraws occur
which are detected by OVERFLOWS and they are added back in to develop the answer.

PROBLEMS:
1. DIVIDE 63 by 21
2. DIVIDE 84 by 21 (Will you get the correct answer even though the dividend

is larger than 64?)
3. DIVIDE 47 by 14 (What is the remainder?)
4. DIVIDE 63 by 11 (What is the remainder?)

- 42 -

CHAPTER 11

BINARY

FRACTIONS

The following discussion, while largely mathematical, illustrates a very
important part of binary mathematics and its application to digital computers.

In base ten the number .3708 is called a decimal fraction and the period in front
of the number is called the decimal point. This same decimal fraction can be
expressed in several different forms, as for example: 3 x (1/10) + 7 x (1/100) +
o x (1/1000) + 8 x (1/10000) or by obtaining a common denominator as, 3708

10000

By similar reasoning, the binary number (.1101) is called a binary fraction and
the period is called the binary point. Just as in decimal this binary fraction may be
expressed as,

1 x (1/10)2 + 1 x (1/100)2 + 0 x (1/1000)2 + 1 x (1/10000)2

where it must be remembered that,

(1/10)2 = 1/2, (1/100)2 = 1/4, (1/1000)2 = 1/8, (1/10000)2 = 1/16

in base ten. We may express this binary fraction more simply as,

(.1101)2 = 1/2 + 1/4 + 1/16

if we wish. Also, just as in the base ten case we may obtain a common
denominator and express the fraction as,

(1101)2

(10000)2
=

13

16

Where the denominator, as in decimal fractions, is always one place larger than
the number of places to the right of the binary point of the binary fraction.

This provides an easy way of converting a binary fraction to a decimal fraction.

Suppose we are given the binary fraction (.11011)2, for example, and asked to
convert it to decimal. Beginning at the left, the binary portions are worth
1/2, 1/4, 1/8, 1/16, 1/32. Therefore, we may express the fraction as,

(11011)2

32

Now by converting the binary integer in the numerator to decimal we obtain,

16 8 4 2
(-1--'-1 0 1

and therefore the answer is,~
32

PROBLEMS:

1

1)2 = 27

Convert the following binary fractions to base ten fractions,
A .. 1001
B. .0111
C .. 11111
D .. 010101

- 43 -

ANSWERS:
A. .1001 = (1001)2 = 9

16 16

B. .0111 = (1.11)2 = 7

16 16

C. .11111 = (11111)2 = 31

32 32

D. .010101 = (10101)2 = 21

64 64

Of course, these fractions could be further converted to decimal fractions by
performing the division. The fraction (9/16), for example, is .5625 and therefore
(.1001)2 = .5625 in decimal.

Every binary fraction (of a limited length) if converted to a decimal fraction
results in a decimal fraction of a limited length. However, the opposite is not true.
Suppose we are given a decimal fraction such as .7 and asked to convert it to
a binary fraction. This simple decimal fraction results in an unending binary fraction.

One of the simplest methods of converting a decimal fraction, such as .7, to binary
is to begin by representing it as the original decimal fraction in the numerator of a
fraction whose denominator is one. For example, .7 =2-

1

Next, we multiply the numerator and denominator of this fraction by two which of
course does not change the value of the fraction. Thus,

.7= 1.4

2

But (1.4) can be further expressed as,
2

1.4 = 1 + .4 = 1 + .4
-2- --2- "2 "2

Continuing in like manner with C iJ we obtain,
2

.7 = .7 = 1.4 = 1 + .4 = 1 + .8 = 1 + 1.6 = 1 + 1 + .6 = 1 + 1 + 1.2 ---------------
1 2 2 2 2 4 2 8 2 8 8 2 8 16

= 1 + 1 + 1 + .2 etc. - - --
2 8 16 16

Thus, .7 can be represented as,

.7 = 1 + 0 + 1 + 1 + .2 - -- --
2 4 8 16 16

or as,

.7 = (.1011)2 + ~
16

By continued multiplication,
A

.7 = (.1ffil:'a0110011001100110 ... Repeats A)2

This rule may be followed mechanically to convert a decimal, such as .3, as follows:

2 x·.3 = .6 0
2 x .6 = 1.2 1
2 x .2 = .4 0
2 x .4 = .8 0
2 x .8 = 1.6 1
2 x .6 = 1.2 1
2 x .2 = .4 0
2 x .4 = .8 0
etc.

- 44 -

Then, .3 = (.01001100110 ... Repeats A)2

Notice that to 6 binary digits,

.3 = (.010011)2

where::: means "approximately equal to". Let us check the reasonableness of
this by expressing (.010011)2 as a decimal fraction.

(.010011)2 = (10011 h = 19 = .296875

64 64
.296875

as, 64) 19.000000

It is interesting to note that a binary fraction containing N bits after binary point,
with the last bit a "I", requires N decimal places to exactly express the binary
fraction as a decimal.

Convert the following decimals to binary.
A .. 625
8. .35
C .. 6
D . .425
E .. 13

Answers,
A

A .. 625 = .10~
B .. 35 = .0~IJBU~1001100110 ..
C..6 =.1 11 11001100110 .. .
D. .425 = .0nOll 11.001100110 .. .
E .. 13 = .o'o10bo01010001111010t ..

Notice that in each of the numbers .35, .6, .425, .3, .7 the binary digits (0110)
repeat themselves. However, in the number .13 this cycle of 4 digits does not occur.
This suggests that an explanation of this peculiar result might be interesting to pursue.

EXPERIMENT I:
It is customary to divide the English measure of distance called the "inch" into
halves, fourths, eights, sixteenths, etc. These divisions behave very well in
binary point but not so well in decimal point. For instance suppose we wished to
add the measurements:

1 1/2" + 7/8" + 1 3/4" + 15/8" + 1 3/8". We could represent these fractions in
binary as 1.1 + .111 + 1.11 + 1.101 + 1.011

Now, if we consider that the MEMORY REGISTER on DIGI-COMP II represents a binary
fraction of the form X.XXX we can add these numbers as follows, (You can assume
there is a binary point anywhere, in any register. Just remember where it is!)

S = 1.100 + 0.111 + 1.110 + 1.101 + 1.011

Now: Compute the sum of the given measurements on DIGI-COMP II.

Try to write the program for this problem. Then check below to be sure it is correct
before programming DIGI-COMP II.

1. A = 0001.100
2. M = 0.111
3. ADD
4. PAUSE
5. M = 1.110
6. ADD
7. PAUSE
8. M = 1.101
9. ADD

10. PAUSE
11. M = 1.011
12. ADD

ADD the measurements manually and compare them with the binary answer in
the ACCUMULATOR.

- 45 -

CHAPTER 12

SUMMARY OF INFORMATION
NECESSARY TO OPERATE

DIGI-COMP II
1. Naming the important components. (Consult Figure 1)

1.1 There are 6 Control Switches:

Name
1.1.1 MULTIPLY
1.1.2 CLEAR
1.1.3 COUNT
1.1.4 COMPLEMENT
1.1. 5 OVERFLOW
1.1.6 AM

Position
Left
OFF
OFF
OFF
ON
RUN
AUTO

1.2 There are 3 REGISTERS which hold binary numbers:
1.2.1 The ACCUMULATOR REGISTER.

1.2.1.1 Has a capacity of 7-bits.
1.2.1.2 Is located at right side of computer.
1.2.1.3 Performs most of the arithmetic.

1.2.2 The MEMORY REGISTER.
1. 2. 2.1 Has a capacity of 4-bits.
1. 2. 2. 2 Is located in the middle of the computer.

Right
ON
ON
ON
OFF
HALT
MANUAL

1.2.2.3 Does not perform arithmetic but holds numbers for use
by the ACCUMULATOR.

1.2.3 The MQ REGISTER
1.2.3.1 Has a capacity of 3-bits.
1.2.3.2 Is located at the left side of computer.
1.2.3.3 Performs arithmetic for MULTIPLY and DIVIDE.
1.2.3.4 Has two sets of numerals on the indicators. The top set of

numerals is used for multiplication. The bottom set of numerals
is used for division.

1. 3 There is a START SWITCH at the lower right which doubles as a Gating
Mechanism when the AM SWITCH is on AUTO. Balls will be directed to roll
past the switch thus automatically gating a successor ball.

1.4 There is "other Circuitry" which is used by the computer.
1.4.1 The DISTRIBUTOR is comprised of 3 FLIP-FLOPS, 01, D2, D3, and is

used to distribute consecutive balls along 4 different paths. It is used in
addition, subtraction, multiplication and division.

1.4.2 The ACCUMULATOR MODE FLIP-FLOPS are comprised of 6 FLIP-FLOPS,
T1, T2, T3, T4, T5, T6. They are normally all to the left, in which
case the ACCUMULATOR is in the "ADD MODE". During the
COMPLEMENT operation they will be set to the right, in which case the
ACCUMULATOR is in the "COMPLEMENT MODE", after which they will
then be returned to the left.

1.4.3 The first and second COMPLEMENT FLIP-FLOPS are called CF1 and CF2.
CF1 is initially set to the left and CF2 to the right.

1.5 There are two important guides which hold the balls while operations are
performed.
1.5.1 The INPUT GUIDE at the top of the computer.
1.5.2 The COLLECTOR GUIDE at the bottom of the computer.

2. Reading the Register.
2.1 All three REGISTERS hold binary or base two numbers only. These numbers

are comprised of strings of "D's" and "l's".
2.2 To convert a binary number such as (0110101)2 to decimal it is necessary to

associate each digit position with one of the powers of two in the following
manner:

64 32

(0 1

16 8 4 2

1 010

- 46 -

Whenever a "1" appears the power of two above it is added into a sum, but
whenever a '·'0" appears nothing is added. Thus, in the example we obtain,

2.3

o + 32 + 16 + 0 + 4 + 0 + 1 = 53

and (0110101)2 = 53
To convert a decimal number, such as 105, to binary it is necessary to
subtract the highest power of two that can be subtracted from the number
and place a "1" in the corresponding position. Then it is necessary to
subtract from the remainder to form a new remainder and place a "1" in that
position, etc. For example, to convert 105 to binary,

105-64 = 41 place a 1 under 64
41-32 = 9 place a 1 under 32
9-16 = cannot be subtracted place a 0 under 16
9-8 = 1 place a 1 under 8
1-4 = cannot be subtracted place a 0 under 4
1-2 = cannot be subtracted place a 0 under 2
1-1 = 0 place a 1 under 1

64 32 16 8 4 2

105 = (1 1 0 1 0 0 1)2

2.4 All registers are read from bottom to top to correspond with reading a
binary number from left to right.

3. The "Normal" positions of the Control Switches.
All the CONTROL SWITCHES having ON-OFF positions are normally set OFF. The
OVERFLOW SWITCH, is normally set on RUN and the AM SWITCH, is normally set on
AUTO. These settings are summarized as follows:

Normal
Name Setting Position

3.1 MULTIPLY OFF LEFT
3.2 CLEAR OFF LEFT
3.3 COUNT OFF LEFT
3.4 COMPLEMENT OFF RIGHT
3.5 OVERFLOW RUN LEFT
3.6 AM AUTO LEFT

Notice that the normal position of all SWITCHES is to the left except for the
COMPLEMENT SWITCH which is to the right.

4. Initializing the computer before an operation.
4.1 Set the ACCUMULATOR MODE FLIP-FLOPS T1 thru T6 all to the left.
4.2 Set CF1 to the left and CF2 to the right. These logic elements need to be

set in this manner only once when the computer is first set up.
4.3 Set D1, D2, D3, of the DISTRIBUTOR all to the right.
4.4 Take all the balls, or a sufficient number, from the COLLECTOR GUIDE and

place them in the INPUT GUIDE.
4.5 Set the CONTROL SWITCHES to their "normal" positions (all to the left except

the COMPLEMENT SWITCH, which is set to the right) as described in 3.

5. Clearing the Accumulator to zero.
5.1 INITIALIZE the computer as described in 4.
5.2 Turn the CLEAR SWITCH, ON (right).
5.3 Turn AM, to MANUAL (right).
5.4 Pull START.

6. Automatic Counting.
6.1 CLEAR the ACCUMULATOR to zero as described in 5.
6.2 INITIALIZE the computer as described in 4.
6.3 Turn the COUNT SWITCH, ON (right).
6.4 Pull START.

7. Manual Counting.
7.1 Follow steps 6.1,6.2,6.3.
7.2 Turn the AM SWITCH, to MANUAL (right).
7.3 Pull START for each time one is to be added.

8. Multiply-Add Operation (AxB+C).
8.1 INITIALIZE the computer as described in 4.
8.2 Place any 3-bit multiplier, "A", which is less than or equal to 7, in the

- 47 -

MQ REGISTER.
8.3 Place any 4-bit multiplicand, "B", which is less than or equal to 15,

in the MEMORY REGISTER.
8.4 Place any 7-bit number, "C", in the ACCUMULATOR (AxB+C) should not exceed

127.
8.5 Turn the MULTIPLY SWITCH, to its ON position (right).
8.6 Pull START

9. Multiply (AxB).
9.1 Perform the same as 8 except clear the ACCUMULATOR to zero first and omit 8.4.

10. Add (B+C) .
10.1 Perform the same as 8 except set" A" equal to one,

(001)2 in 8.2.

11. Complement the Accumulator.
11.1 INITIALIZE the computer as described in 4.
11.2 Turn the COMPLEMENT SWITCH, ON (left).
11.3 Pull START.

12. Subtract (B - C). Subtraction may be performed in either of two ways, but in either
method the answer will appear in the ACCUMULATOR.
12.1 Case 1. The number "B" is less than 16. Subtraction is performed by

adding B to the COMPLEMENT of C.
12.1.1 Place C in the ACCUMULATOR and COMPLEMENT the ACCUMULATOR

as described in 11. Turn the COMPLEMENT SWITCH OFF (right).
12.1.2 Place B in the MEMORY REGISTER.
12.1.3 Place (001) in the MQ REGISTER and turn the MULTIPLY SWITCH to

its ON (right) position.
12.1.4 Pull START.

12.2 Case 2. The number "B" is greater than 15, but "c" is less than 16.
Subtraction is performed by adding "c" to the COMPLEMENT of B, then
COMPLEMENTING the result.
12.2.1 Reverse the numbers "B" and "C" and follow 12.1.1 thru 12.1.4.
12.2.2 Turn the MULTIPLY SWITCH OFF (left) and follow steps 11.2 thru 11.3.

13. Count Out "A" balls from the Input Guide to the Collector Guide.
13.1 Place the number "A" in the ACCUMULATOR in binary.
13.2 COMPLEMENT the ACCUMULATOR as described in 11.
13.3 INITIALIZE the computer as described in 4.
13.4 Turn the OVERFLOW SWITCH to HALT.
13.5 Turn the COUNT SWITCH to ON.
13.6 Press Start. Exactly" A" balls will be triggered and the computer will

stop on an ACCUMULATOR OVERFLOW.

14. Divide AlB. (The divisor "B" must go into the dividend" A" a whole number
of times).
14.1 Place "A" in the ACCUMULATOR, "B" in the MEMORY REGISTER, and set

the MQ REGISTER to (000) using the lower set of numerals.
14.2 COMPLEMENT the ACCUMULATOR as described in 11.
14.3 INITIALIZE the computer as described in 4.
14.4 Turn the OVERFLOW SWITCH to HALT.
14.5 Turn the MULTIPLY SWITCH to its On (right) position.
14.6 Pull START.

The answer may be read in the MQ REGISTER using the lower numerals.

15. Divide AlB to obtain a quotient and a remainder.
15.1 Follow the procedure for DIVIDE given in 4.
15.2 Turn the AM SWITCH to MANUAL.
15.3 Pull START as many times as required (0, 1,2, or 3) to return the

DISTRIBUTOR elements 01, 02, 03 to their initial right positions.
15.4 COMPLEMENT the ACCUMULATOR as described in 11, then turn the

COMPLEMENT SWITCH OFF.
15.5 Flip each element in the MQ REGISTER to its opposite position. Turn the

AM SWITCH to MANUAL.
15.6 Pull START four times.

The quotient may be read from the MQ REGISTER using the upper set of the
numerals and the remainder may be read in the ACCUMULATOR.

- 48 -

CHAPTER 13

SPECIAL PROBLEMS AND APPLICATIONS FOR

DIGI-COMP II
This chapter discusses several practical areas that illustrate how a DIGITAL
COMPUTER is used for solving problems. Each area has illustrative problems,
some very simple and others more advanced.

Try to do each problem yourself and then check your program against those given
at the end of the chapter. Remember, however, that the sequence of your program steps
need not necessarily be the same as those given in the answers. The important point
is that you have not omitted any steps, made errors, or written too long a program.

You will undoubtedly be able to create many, many more problems to program than
we have shown you here. By now you should be able to "talk" to your DIGI-COMP II
and program it to solve your own problems! Good Luck and we hope you have fun.

I. COMPUTING AREAS
Area is a measure of the surface of an enclosed figure. It is measured in
square units, as for example square feet. If it were desired to compute the
area of a rectangle which is 3 feet wide Py 5 feet long, we would multiply
3 by 5 to obtain 15 square feet of surface inside the rectangle. This, of
course, means that 15 squares each of which were 1 foot long by 1 foot wide
would exactly cover the surface of the rectangle if they were placed beside
one another inside the rectangle.

In general if a rectangle is "L" units long and "w" units wide the area
inside the rectangle is given by the formula,

A=LxW
or "A" is equal to the length times the width.

Use DIGI-COMP II to solve the following problems.

PROBLEM 1. Calculate the Area of a rectangle 5 feet wide and 13 feet long.
See program page 60 to check your own program.

PROBLEM 2. A rectangular box is 4 feet by 9 feet by 14 feet. Calculate the
sum of the areas of its two smallest sides.

PROBLEM 3. It is desired to spray a chemical on a large outdoor area by using
an airplane. The area is 5 miles wide and 9 miles long. With one loading of
chemicals the airplane can spray 15 square miles. How many loadings of
chemicals will be required?

To solve this problem we wish to first calculate the number of square miles to
be sprayed by multiplying 5 times 9, then we wish to divide this result by
15 to determine the number of loadings required.

II. CALCULATING THE WEIGHT OF AIR
At sea level the atmospheric pressure is 14.7 lbs. per square inch. This means
that a column of air one inch long by one inch wide extending upward to the
sky as high as the air extends would weigh 14.7 lbs. For purposes of simplicity,
let us call atmospheric pressure 15 lbs. per square inch.

PROBLEM 4. Calculate the weight of air at sea level on a rectangular surface
2 inches wide by 3 inches long by the formula Weight = 2x3x15 pounds.

III. THE PRINCIPLE OF ARCHIMEDES
According to Archimedes principle, an object under water is buoyed upward
by a force which is equal to the weight of the water which it displaces. For
example, if a tank is filled with water up to an overflow spout and a large
stone weighing 100 lbs. in air is placed in the water caUSing a certain amount
of water to overflow, and if this water weighed 60 lbs., then the stone would
be buoyed upward in the water by 60 lbs. of force. This means that the stone
would weigh (100 - 60) or 40 lbs. under water.

PROBLEM 5. An object that weighs 28 lbs. in air displaces 13 lbs. of water.
Calculate its weight under water using DIGI-COMP II.

- 49 -

IV. IlERA liON
Computers are frequently programmed to repeat a given calculation over and
over again a great number of times until a sought-after result is obtained. The
square root of a number is normally computed in this "iterative" manner
instead of following the procedure that is customarily taught.

Without using the computer try to compute the square root of 13 by the following
set of instructions:

A. Guess a number, such as 4, which is an approximation to the square root
of 13.

B. MULTIPLY this approximation by itself and ADD the result to 13.
C. DIVIDE the number you obtain by twice your approximation and call this

new result your next approximation. Write it down.
D. Using this next approximation to the square root of 13, repeat steps B,

C and D rounding all the results to two decimal places.
E. Upon each repetition of steps Band C the approximation will get closer

and closer to the square root of 13. Stop the iteration when the
approximation to the square root of 13 is no longer changing to within
two decimal places.

To illustrate:

Step

B

C

1st Result

29

3.63

2nd Result

26.18

3.61

The square root of 13 is 3.606 to three decimal places.

3rd Result

26.03

3.61

PROBLEM 6. Calculate the Square Root of 2. The basic technique is as
follows:

A. Set the ACCUMULATOR equal to one.
B. Set the MEMORY REGISTER equal to one.
C. ADD the MEMORY REGISTER to the ACCUMULATOR.
D. EXCHANGE the number now in the ACCUMULATOR with the number

now in the MEMORY REGISTER.
E. ADD the MEMORY REGISTER to the ACCUMULATOR.
F. Write down a fraction with the number now in the ACCUMULATOR as the

numerator and the number in the MEMORY REGISTER as the denominator.
G. Go back to C and repeat steps C, D, E and F until the number in the

ACCUMULATOR is too large to perform step D.

Now Convert each of the fractions obtained in E to a decimal by dividing
the numerator by the denominator using a piece of paper and a pencil.
These fractions should approach closer and closer to the square root of 2,
which is 1.414, on each iteration.

This program could be shown in a "Flow Diagram" similar to the one discussed
on page 8. This is a technique used by programmers to visually illustrate the
sequence of events and therefore clarify the procedure of the program.

Step A

Step B

Step C

Step D

Step E

Step F

Step G No Yes 3....
IfuillJ

*The symbol..-.. indicates an exchange of the values of REGISTERS. In
this case it means to put the contents of MEMORY into the ACCUMULATOR
and the contents of the ACCUMULATOR into the MEMORY REGISTER.

- SO -

Compare the flow chart with steps A thru G. This should help make it clear
what each box is saying. An oval genera11y indicates that a question is being
asked. In this case, it is asking if A is greater than 7.

Just to check a few of your steps the answers you obtained should have been,

Start 1st Iteration 2nd Iteration
ACCUMULATOR
MEMORY REGISTER

Notice that the fractions

137
1 2 5

1 = 1.00, 3 = 1.5, 7 = 1.4,
- -
125

approach 1.414, closer and closer with each iteration. Repeat problem 6
with statement "A" changed to "Set the ACCUMULATOR equal to 2." Do the
fractions sti11 approach the square root of two?

V. SUMMING INFINITE SERIES
Suppose we dropped a ba11 from a height of 14 feet and observed that it
bounced up to a height of 7 feet after hitting the ground. As this is half its
originarheight we would natura11y expect that the same ba11 would bounce up
to a height of 3 1/2 feet if it were next dropped from 7 feet. But is this right?

If we were simply not to catch the ba11 after its first drop from 14 feet we
would expect it to bounce up to 7 feet on the first bounce, 3 1/2 feet on th~
second, 1 3/4 feet on the third, etc., etc., thus making an infinite number of
bounces. But this seems absurd. We know from experience that the ba11 does
stop bouncing. Therefore, we cannot believe that the ba11 makes an infinite
number of bounces before it stops a few seconds later, so, we are
tempted to conclude that this model is in some way wrong. Perhaps as the
bounces get sma11er the ba11 actua11y bounces to less than half its original
height, or maybe it suddenly stops bouncing after a certain number of bounces.

If we were to experiment further, however, we would find that, fraction of one
half is indeed maintained on every bounce, to as far as we can easily measure.
How can we account for the fact that the ba11 does stop bouncing?

Let us assume that this strange behavior of the ba11 does in fact occur, that
is that the ba11 bounces to half its prior height on each bounce, and it bounces
an infinite number of times before it stops. Let us attempt to calculate the sum
of a11 the distances that the ba11 fa11s. If this is the case, off hand, we would
expect this sum to be infinite. We add.

S = 14 + 7 + 3 1/2 + 13/4 + 7/8 + ... but let us add this sum in binary.

PROBLEM 7. Compute "S" (the sum) by the expression,

S = (1110.) + (111.) + (11.1) + (1.11) + (.111) + ..

This problem is solved by adding and shifting. The program will be written
out in long hand here because of its complexity. It is also given in
DIG 1- TRAN on page 60.

Program: (In the set of instructions that fo11ows the location of the binary
point must be remembered in interpreting the numbers).

1) Place (1110.) in the ACCUMULATOR as (0001110.).
2) Place (0111.) in the MEMORY REGISTER.
3) ADD the MEMORY REGISTER to the ACCUMULATOR obtaining (0010101.).
4) Manua11y shift the ACCUMULATOR left one place by moving each bit down

one place obtaining the number (010101.0) in the ACCUMULATOR.
5) Place (011.1) in the MEMORY REGISTER.
6) ADD the MEMORY REGISTER to the ACCUMULATOR.
7) Shift the ACCUMULATOR left one place again. The binary point is now under-

stood to be in the position shown; (XXXXX.XX).
8) Place (01.11) in the MEMORY REGISTER.
9) Add the MEMORY REGISTER to the ACCUMULATOR.
As no more ACCUMULATOR SHIFTS can take place without losing information we
can no longer add further binary fractions without losing precision.

- Sl -

What is the number we have so far in the ACCUMULATOR as a decimal? To
figure this out we must remember where the binary point is and evaluate the
number as fo11ows remembering that 1/2 = .5 and 1/4 = .25 in decimals:

16 8 4 2 1 .5
1 1 a 1 O. a

.25
1) = 26.25

Although we cannot shift the ACCUMULATOR further to the left to permit the
addition of (.111), (.0111), (.00111), (.000111), etc. we round*
each of the numbers to two binary places and add in an attempt to gain further
precision in the answer. Thus we would round,

Truncated + Rounding Final
Number Correction Number

(.111) as (00.11) + (00.01) = (01.00)
(.0111) as (00.01) + (00.01) (00.10)
(.00111) as (00.00) + (00.01) = (00.01)
(.000111) as (00.00) + (00.001) (00.00)

Therefore, it is only necessary to add (01.00) + (OO.lO) + (00.01) = (01.11)
to the ACCUMULATOR to gain further precision.

lO) Place (01.11) in the MEMORY REGISTER.
11) ADD it to the ACCUMULATOR. What is the answer in decimal?

If we were able to retain complete precision in our addition and if we were to
continue to add the number (1110.) + (111.) + (11.1) + (.111) +
(.0111) + etc., would you expect the sum to grow without limit or always to be
less than some limiting number? The strange fact is that the sum of this infinite
number of terms does not grow infinitely large but approaches a limiting number!
In fact in this particular case, the limiting number is 28. (If you operated
DIGI-COMP II correctly and added the sum (01.11) three numbers (.111),
(.0111), and (.00111) rounded upward as instructed in Step lO you should
have obtained exactly 28). Thus, the sum of an infinite number of numbers can
be a finite (Not infinite) number. In this case even if the ba11 makes an infinite
number of bounces, it travels only a total of 28 feet downward.

How Long will the Ball Bounce?
Perhaps more interesting than the distance traveled would be
the total time it would take to bounce an infinite number of times. Is it
possible that we could add a11 the times taken between the bounces and
obtain a finite number even assuming that the ba11 bounced an infinite
number of times? The answer is "yes"! In fact, if a ba11 were dropped from
14 feet and bounced up to half its prior height on each bounce, the total time
taken for the infinite number of bounces would only be about 5.5 seconds.

Although we will not compute this answer we can menta11y compute the time
taken in a slightly altered case. Suppose the ba11 were dropped from 16 ft. and
bounced up to 1/4 of its prior height on each bounce. Then an accepted
formula for motion (from Physics) te11s us that it would take one second to
hit the ground after it was first released. Moreover it would take 1/2 a second
to bounce up to 4 ft. after its first bounce and 1/2 second more to fa11 to the
ground again, or a total of one second more between the first and second
bounces.

Further calculations would show that 1/2 second would be taken between
the 2nd and 3rd bounces, 1/4 second between the 3rd and 4th bounce, 1/8
second between the 4th and 5th bounce, etc.

Therefore, the total time in seconds to bounce an infinite number of times
would be,

T = 1 + 1 + 1/2 + 1/4 + 1/8 + 1/16 etc.

*In rounding a binary number, it is conventional to round up if there is a one
in the first position lost by the rounding. It may seem a great inconvenience
to have to do this rounding off, but the truth of the matter is that even in the
world's largest electronic computer, the programmer is sti11 faced with the problem.

Fortunately the programmer does not have to do this manua11y, it is accomplished
simply by inserting the ROUND command in the program at the proper time.

- 52 -

or in binary,
T = (1.) + (1.) + (.1) + (.01) + (.001) + (.0001) + etc.

This means the total time would be,
T = (10.111111111111111 ...)

in binary. But the unending fraction (.11111 ...) in binary is equal to
(1.) just as the unending decimal (.9999 ...) is equal to 1. Therefore,

T = (10.) + (1.) = (11.) = 3 seconds. In other words, the ball would
bounce an infinite number of times in 3 seconds!

If this bothers you add the following fraction directly instead of assuming
that (.11111 ...) is equal to one.

S = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + etc.
Note that,

1/2 + 1/4 = 3/4
1/2 + 1/4 + 1/8 = 7/8
1/2 + 1/4 + 1/8 + 1/16 = 15/16
1/2 + 1/4 + 1/8 + 1/16 + 1/32 = 31/32

And that we can never reach "1" no matter how many terms we added but
we can come as close to "1" as we like. Perhaps the theoretical model which
assumes that the ball bounces an infinite number of times is not so bad after
all!

VI. THE POPULATION EXPLOSION
Let us assume that in a certain country an average number of three children
are born to a family. Let us further assume that only 2 1/2 of the three
children can expect on the average to grow to adulthood, marry and have a
similar average-sized family. As 2 parents produce on the average 2 1/2
children who will in turn be parents, we can think of this as each of the
parents producing 1 1/4 children who will in turn reproduce themselves in
like manner.

Let us assume still further that it takes on the average 35 years for a person
in this hypothetical country to reproduce the average number of 1 1/4 children.
This 35 years then will be called a "generation". For purposes of simplicity
let us further assume that as soon as a person reproduces 1 1/4 children he
is no longer counted in the population. Now if one person produces 1 1/4
persons as a first generation, these 1 1/4 persons will produce 1 1/4 x 1 1/4
persons as a second generation, and these people will in turn produce 1 1/4 x
1 1/4 x 1 1/4 people as a third generation, etc.

PROBLEM 8. How many people will be produced by one person in 3 generations? About
how many years will be required for the population to double?

Again, because of the c.omplexity of the program, it is written out in long
hand below. It is written in DIGI-TRAN on page 61.

Program:
1) Place (1.01) = 1 1/4 in theMQ REGISTER.
2) Place (01.01) in the MEMORY REGISTER.
3) CLEAR the ACCUMULATOR first, then multiply the MQ REGISTER by the

MEMORY REGISTER. The product thus far will be in the ACCUMULATOR
in the form (XXX.XXXX).

4) Round this number to four Significant binary digits. In this case (1.01) x
(01.01) should give (001.1001) in the ACCUMULATOR which should be
rounded to (1.101).

5) Place 1.101 in the MEMORY REGISTER.
6) Again place (1.01) in the MQ REGISTER.
7) CLEAR the ACCUMULATOR.
8) MULTIPLY the MQ REGISTER by the MEMORY REGISTER. The answer should be

of the form (XX.XXXXX).
9) Round the answer to the form (XX. XX) and express as a decimal. The

ACCUMULATOR now should read 00010.001 which is 2, so the population
has doubled in 3 generations.

- 53 -

VII. AREA OF CIRCLE
In geometry we learn that the distance around a circle, called the circumference,
is about 3 times the distance across a circle, called the diameter. Actually,
the circumference is said to be not 3 times the diameter but" 1T''' (called
pi) times the diameter, where 11 can be mathematically computed to be
3.14159265 ... , a never ending decimal fraction.

Having defined the number 'lr in this manner it can be proved that the area
"A" of a circle is given by the formula,

A = rrr r2

where "r" is the radius. This formula means that the area of a circle whose
radius is "7", for example, may be calculate d to be approximately,

A = 3.14 x 7 x 7

PROBLEM 9. Using DIGI-COMP II calculate'the area of a circle given that
the radius is 7 inches.
a) To do this the number 3.14 must first be expressed as a binary fraction.
b) As 3.14 must be placed in the MEMORY REGISTER to perform the

multiplication we must express it as a number having no more than 4
binary bits.

c) The 4-bit binary fraction (11.00) represents the decimal number 3.00.
The 4-bit binary fraction (11. 01) is 3 1/4 or 3,25 in decimal. As 3.25
is closer to 3.14 than 3.00 we will choose to represent 'lr to 4-bits of
accuracy as (11.01). Program to compute the Area of a Circle of radius 7.

Read this thru and then try writing your DIG I-TRAN program. See page 61
for Correct program.
1) Place '11 = (11.01) in the MEMORY REGISTER remembering that the

binary point is between the 2nd and 3rd bit positions.
2) CLEAR the ACCUMULATOR to zero.
3) Place 7 = (111) in the MQ REGISTER.
4) MULTIPLY 7 X 11 . The product in the ACCUMULATOR should be (10110.11).

We must be mentally aware that the answer has two binary fraction places
as the sum of binary fraction places of the two numbers is 2 places.

We now wish to multiply the result thus far (10110.11) by 7 = (111) again.
5) Therefore, we must round (10110.11) to 4 binary bits in order that we can

place it in the MEMORY REGISTER. Rounding we obtain (10110.), where only
the left most 4-bits are significant.

6) The left 4-bits of the number (10110.) are now placed in the MEMORY
REGISTER as (1011) and we mentally remember that there is actually
another "0" bit in the number to the right before the binary point.

7) Place the radius (111) in the MQ.
8) CLEAR the ACCUMULATOR.
9) MULTIPLY (111) x (1011). It must be remembered that the 7-bit answer

in the ACCUMULATOR has an understand "0" bit to the right before the
binary point. In other words, the number (1001101) in the ACCUMULATOR
should be read as (10011010). Converting this number to decimal we obtain,

128 64 32 16 8 4 2 1

(1 0 0 1 1 0 1 0.) = 154.

If the same problem were carried out in de cimal we would obtain,

A = 3.14 x 7 x 7 = 153.86 square inches.

PROBLEM 10. Calculate the Area of a Circle of radius 6 using this method.
See if you can write the program from memory and then check it against the
answer on page 61.

The answer calculated in decimal is 113.04. How close are you?

- 54 -

VIII. RANDOM NUMBER GENERATION
There are many problems programmed for computers which require the
computer to produce a long list of random numbers. As there is no wheel of
fortune inside the computer a means must be found uSing its normal ability
to ADD, SUBTRACT, MULTIPLY and DIVIDE to produce the desired list.

The method used on the computer must be simple. This is because most
problems demand a great quantity of random numbers to obtain meaningful
results. Even though an electronic computer is very fast, time on the machine
can be very costly, as much as several hundred dollars per hour on a large
computer. Therefore, it is desirable to reduce the required computer time as
much as possible.

One of the simplest methods used to generate random numbers requires one
multiplication, one addition and one division for each number generated. On a
binary computer the divisor is ordinarily chosen to be a perfect power of two so
that the actual division need not really be performed. All that is necessary,
for example, to divide a binary number such as (1101101.) by 24 or 16, is
to move the binary point from its right-most position 4 places to the left. Thus,
(1101101.) or 109 divided by 10000. or 16 is (110.1101) or 6 with a
remainder of 13.

Strictly speaking, the computer does not generate a set of truly random
numbers. If it did there would be no rule which would relate one number of
the set to the next number of the set as is actually ~he case. For this reason
computer generated numbers using a simple rule are called "pseudo random".

DIGI-COMP II may be used to generate pseudo random numbers between
"0" and "15" by the following method.
A. Start with any number between 0 and 15. Call this number "R". (Let us

start with "0", for example).
B. Compute the number 5 times "R" plus 13. DIVIDE this number by 16

and write down the remainder obtained after the division. (In other words
write down the low order 4-bits after the MULTIPLY-ADD operation).

C. Call this remainder by the name "R" and go back to instruction 2.
D. Repeat instructions 2 and 3 as many times as required to generate a

list of pseudo random numbers which eventually repeat themselves.

If we start with R = 0 then the remainder of (5xR+13) /16 is 13. Now we
set R = 13 and calculate the next remainder of (5xR+13) /16 which is 14.
Proceeding in this manner we should generate the following list of numbers.

Step Number

1
2
3
4
5
6
etc.

Pseudo Random Number

13
14
3

12
9

10

PROBLEM 11. Generate a set of random numbers using the formula,
S = Remainder of 5 x R + 9

16
where "R" is a given random number and "S" is the next random number.
Then set "R" equal to "S" and use the formula again to generate the next
"S", etc. Stop when the list eventually repeats itself. Suppose we start
generating the list by setting R = 6.

As a check on your work the first few numbers obtained should be,

- 55 -

Random Equivalent
Cycle Binary Number Decimal Number

1 (0110) 6
2 (0111) 7
3 (1100) 12
4 (0101) 5

Each of the number a thru 15 are generated once and only once until the
list repeats itself. This implies that the list is exactly 16 numbers long.

IX. SIMULATION
Simulating a Baseball Game.

Computers are frequently used to simulate a complicated process when
information is known (or estimated) for only isolated events. For example,
if we know the probabilities that each baseball player or a team will hit a
single, or a double, or a triple, or a home run, or walk, or get out, we can
simulate nine innings at bat and ask how many runs would be expected in a
nine inning game. It would be necessary to simulate the game a number of
times to get an average number of expected runs.

Using pseudo random numbers discussed in Problem 11, let us try to
simulate several innings at bat of a team called the "Bob Cats".

First, the Bob Cats have 9 men whose names are A, B, C, D, E, F, G, H, I.
Some of them are better hitters than others. The following table gives the
probability that each man might get a single, a double, a triple, a home run,
a walk or an out if he is at bat. The table gives the number of chances
out of 16 that any of these things will happen.

TABLE 1

Single Double Triple Home Run Walk Out

A 4 1 1 a 1 9

i:-~r·~, -~~~···=t-j~~+~~~f--~ -~~~-I;if
-f--~ t- i --~ ._- ~ _. ~-l-~~ ~~ -- ~- ~~~~t~--+-~ir=

Reading the table we see that man "C", for example, has 2 chances out
of 16 to hit a single, 2 chances out of 16 to hit a double, lout of 16 for a
triple, 2 out of 16 for a home run, lout of 16 for a walk, and 8 out of 16 to
get out. For any given man, read across the table to determine his chances of
a single, double, a triple, etc. The numbers must add to 16 because it is
assumed that one of these 16 possibilities must occur.

Now let us form another table which will reflect these probabilities but use
the pseudo random numbers from a to 15 to determine which of these events
occur for a given time at bat.

TABLE 2

Single Double Triple Home Run I Walk Out

This table says that if either the random number "0" or "I" is obtained
when "C" is at bat we will assume that he has hit a single. This corresponds
to 2 chances out of 16. If "2" or "3" is obtained we will assume that "c"
has hit a double, if 4 a triple, if 5 or 6 a home run, if 7 a walk and if 8 thru
15 an out. These correspond to 2 chances for a double, 1 for a triple, 2 for
a home run, 1 for a walk and 8 for an out.

Let us further assume that a single will drive any player on base 2 bases
and a double (or better) will drive all players home.

PROBLEM 12. Use the table of random numbers generated in Problem 10.
When you have used all 16 of the numbers repeat the cycle. Draw a
baseball diamond on a piece of paper and get some coins to simulate the
players on the base paths.

Now take each random number in turn, and each batter in turn and look up
the outcome in Table 2. You can playas many innings as you wish
using the regular rules of baseball. You could change your batting
order around at the beginning of each game if you wish. You could also
develop your own team, by changing the hitter's ability around. To do this
you have to be sure that each player has 16 possibilities as it is in Table 2.

To make it fair, you should also be sure that you and your opponent have
equal strength ball teams. That is in Table 2 the Bob Cats will get 21
singles out of 9 x 16 or 144 times at bat. So it doesn't matter how you
change your team around so long as they can get a total of 21 singles out of
144 times at bat. The same holds true for doubles, triples, homers, and outs.

X. AN ACCOUNTING PROBLEM
One should not have the impression that computers are used only for
scientific calculations. Actually, computers are used more for all other
applications than they are for scientific work. In particular financial data
processing accounts for a very substantial use of computers.

Typically, in financial data processing a huge "file" of information is stored
magnetically either on magnetic tape or on a magnetic disc which looks
similar to a record player. This "master file" of information contains.
great numbers of "records" of information which are all pretty much alike
except each record applies to a different situation. During the course of a
certain period of time, let's say a month for example, a number of transactions
occur which must be used to "update" the information in many of the records
in the master file.

As an example, let us assume that company ABC sells items on credit to
many people including a man by the name of Jones. Any time a credit sale
takes place to Jones or any time that Jones pays something on his account a
transaction occurs which must either add or subtract from the amount that
Jones owes company ABC. Therefore, these transactions are batched or
saved and once a month all of Jones transactions are used to update his
record on the master file. Of course, similar transactions apply to many other
records in the file.

PROBLEM 13. Mr. Jones buys the following items on the following dates
during the month.

Date

March 2
March 15
March 13

Quantity

3
2
4

Amount Each

$5
$13
$7

He owed the ABC company $20 at the beginning of the month. Mr. Jones
made the following payments on his account during the month.

Date

March 20
March 25

Amount

$14
$13

- 57 -

Questions:

1) How much does Mr. jones owe as of March 3l?
2) What was the maximum amount that he owed during the month?

The proper solution of this problem consists of calculating the outstanding
balance in Mr. jones' account chronologically. These will have to be recorded
on paper. In an electronic computer, the balance would be automatically
printed each time the PRINT COMMAND is given.

XI. BALLISTIC MISSILE CALCULATIONS

y

rfJ

~
"s
>,

.:c
I:>Jl

';V
:r::

PROBLEM 14. A ballistic missile is fired down range with a velocity V of 2 miles
per second. If the rocket is fired at an angle-e-of 45 0 with the Earth, how far
down range will it land?

,..,.,--..-~-----
/ , ROCKET

/" '-'
"

Vy
......

......

" " \
Fi~ing I""'(~---------=-:---x---_______ "'""""_~I
POInt Distance = x miles Landing >

Point
Solution:
Assume the acceleration, g, due to gravity* to be -.! miles per second, or

1 mi/sec2 170

170

The basic equations of a ballistic missiie** are (ignoring air resistance
since the missile spends most of its time above the atmosphere).

1) X = Vx ·t, where: Vx is the component of the missile's velocity
in the downrange or X direction and t is the time of missile's flight,

2) and t = ~ where Vy is the component of the missile's velocity upward,

g
and g is the gravitational acceleration for the Earth. Since for the Earth
g = _~ mil sec2, we can rewrite equation (2) as

170

*The acceleration of a body due to gravity is a result of the gravitational
attraction between the mass of the Earth and the body (in this case, the
missile). Since the Earth's shape and density are not constant, the
acceleration will vary somewhat from place to place on the face of the
Earth. Of course a large electronic computer can handle many more
decimal places than DIGI-COMP II and therefore these slight gravitational
variations could be put into the computer.

Question -
Would the acceleration due to gravity be different on other planets?

Answer -
Yes, it would vary very much. On Mercury, it would be smaller than on
the Earth and on jupiter, much more. In fact an earthman would probably
not be able to stand up on jupiter since he would weigh so much more.

**An elementary physics book or certain encyclopedias will show where these
equations come from.

- 58 -

3) ort=170vy =Vy =~=170vy.
g 1/170

4) Let us substitute this value of t given in equation (3) in equation (1)
giving x = Vx ·t = Vx ·170 Vy = 170 Vx ·vy.

5) Now if the mi!i.sile is fired at a 450 allgle, -& with a velocity Y then
Vx = Vy and y'L = 2v 2 since y2 = v 'L + v 2
Therefore equation (4) becomes x y

6) X = 170 Vx .vy = 170 vx'vx = 170 vx2 = E~ y2 = 85 y2.
2

In this case since Y = 2 mil sec 2, the multiplication of 2 x 2 x 85 will not
only cause an ACCUMULATOR OYER FLOW but the number 85 is too
large to be put in the MEMORY REGISTER. So we will have to develop a
special technique for multiplying. To accomplish this we shall express
85 as follows:

7) 85 = 8 x 10 + 5
The problem can now be programmed on DIGI-COMP II by multiplying
2 x 2 x 8, converting the ACCUMULATOR to decimal, mentally multiplying
that by 10 and writing the answer down. Next multiply 2 x 2 x 5 on
DIGI-COMP II, convert this answer to decimal and add it to the previous
one. Now you will have the total number of miles down range that the
l'lissile travels.

PROBLEM 15.
If the missile is fired at a different angle -& than 450 then the components of
the velocity Y in the x and y directions are given by trigonometry as

Vx = Y cos-&
and

Y = Y sin-&
Therefore Equation (6) \ecomes
8) X = 170 vx"-~ = 170 Y cos-e- Y sin-&
9) or X = 170 y2 sin -e- cos-&-.
Older electronic missile computers used to carry along a "table" of values of
sin-e-and cos-& stored in an electronic memory. Today, however, the size of
the electronic components is so small and their speed so great that often the
computer designer simply adds additional components, and then programs
the computer to compute the value of the sin and cos of --e- in a few millionths of
a second.

Now, if we assume the value of sin -& and cos --e- has been computed it becomes
a simple matter to program your DIGI-COMP II to accomplish the final
computation for X. For example. let us assume--e- = 300.

Then sin--e- = 0.50 and cos --e- = .85
(These can be obtained from any standard table given in trigonometr y
books and many other math books and encyclopedias.)
so that sin--e- cos --e- = .425.

Then Equation (9) becomes for this case
10) X = 170 . y2 . .425
:vIultiplying .425 times 170 we find that
11) X = n.25y2

If we still wish to use the initial velocity of Y = 2 mil sec2 the multiplication
will obviously cause an OVERFLOW in the ACCUMULATOR. This time
you may do the multiplication using the same technique developed in
Problem 14. The number 72.25 can be broken up as follows:
12) 72.25 = 7 x 10 + 2.25

Try other values of the angle--e- and other values of Y to see what
the pattern of impact or landing points for our missile might be .
. \ote: Further interesting exercises would be to solve Equations (1) and
(2) for t and vy . Then the height the missile attains would be

y = Vy . t

You should try setting up these equations on your DIGI-COMP II as
Special Exercises.

- 59 -

PROGRAMS FOR PROBLEMS
PROBLEM 1.
1. M = 1101
2. MQ = 0101
3. MULTIPLY

PROBLEM 2.
The smallest two faces of the box are 4 by 9 ft. The problem could be
solved by multiplying 4 x 9 and then doing a MULTIPLY-ADD operation.
The program is:

1. CLEAR
2. MQ = 100
3. M = 1001
4. MULTIPLY
5. PAUSE
6. MQ = 100
7. MULTIPLY-ADD*

PROBLEM 3.
1. CLEAR
2. MQ = 101
3. M = 1001
4. MULTIPLY
5. PAUSE
6. M = 1111
7. DIVIDE

PROBLEM 4.
In this problem we will use some new commands. These are called transfer
commands. For instance, "M = A" means "put the contents of the ACCUMULATOR
into the MEMORY REGISTER. " (That is, if A is 0001101 then make M = 1101).
Similarly MQ = M means "put the contents of the MEMORY REGISTER into the
MQ REGISTER," Etc.

1. CLEAR
2. MQ = 010
3. M = 0011
4. MULTIPLY
5. PAUSE
6. MQ = A
7. M = 1111
8. MULTIPLY

PROBLEM 5.
1. CLEAR
2. A = 0011100
3. M = 1101
4. SUBTRACT
5. COMPLEMENT

PROBLEM 6.
1. A = 0000001
2. M = 0001
3. ADD
4. A M
5. ADD
6. PRINT AIM
7. If (A > 7); 8,3
8. HALT

Several new commands have been used here. If you are not sure of their
definitions refer to your Programmers Card.

PROBLEM 7.
1. A = 0001110
2. M = 0111.
3. ADD

*The MUL TIPL Y -ADD command is the same as MULTIPLY except that you don't
clear the ACCUMULATOR.

- 60 -

4. SHIFT LEFT*
S. M = 011.1
6. ADD
7. SHIFT LEFT
8. M=01.11
9. ADD

10. M = 0.111
11. ADD

PROBLEM 8.
1. MQ = 1.01
2. M = 01.01
3. MULTIPLY
4. ROUND (X.XXX)'.**
5. M = A
6. MQ = 1.01
7. CLEAR
8. MULTIPLY
9. ROUND (XX.XX)

PROBLEM 9.
1. M = 11.01
2. CLEAR
3. MQ = 111
4. MULTIPLY
S. ROUND (XXXX)
6. M = A
7. MQ = 111
8. CLEAR
9. MULTIPLY

PROBLEM 10.
1. M = 11.01
2. CLEAR
3. MQ = 110
4. MULTIPLY
S. ROUND (XXXX)
6. M = A
7. MQ = 110
8. CLEAR
9. MULTIPLY

PROBLEM 11.
1. A = 0001001
2. M = 0110
3. MQ = 101
4. MUL TIPL Y -ADD
S. PAUSE
6. ROUND A (XXXX)
7. M = A
8. A = 0010000
9. DIVIDE

10. PAUSE
11. M = A
12. A = 0010000
13. SUBTRACT
14. PAUSE
15. COMPLEMENT
16. PRINT
17. M = A
18. If A = 6; 18, 1 ***
19. HALT
*SHIFT LEFT means to manually shift the ACCUMULATOR left by one place,
by moving each bit down one place, obtaining the number.

** This command says "IF A = 6, go to step 8, if A does' not equal 6,
go back to Step 1. The first number after the semi-colon always corresponds
to a "yes" answer and the second to a "no" answer.

"**The round command means to round the number to the form shown in the
parentheses. (Remember that if the highest order bit which is truncated is a
1, that 1 should be added to the lowest order bit which is preserved).

- 61 -

PROBLEM 12.
The game should be played on paper. You use the numbers your
DIGI-COMP II generated in Problem 11.

PROBLEM 13.

Program
1. A = 0010100
2. MQ = 011
3. M = 0101
4. MULTIPLY-ADD
5. PAUSE
6. PRINT
7. MQ = 010
8. M = 1101
9. MULTIPLY-ADD

10. PAUSE
11. PRINT
12. M = 1110
13. SUBTRACT
14. PAUSE
15. COMPLEMENT
16. PAUSE
17. PRINT
18. MQ = 100
19. M = 0111
20. MULTIPLY-ADD
21. PAUSE
22. PRINT
23. M = 1101
24. SUBTRACT
25. PAUSE
26. COMPLEMENT
27. PAUSE
28. PRINT

PROBLEM 14.
1. MQ = 010
2. M = 0010
3. MULTIPLY
4. PAUSE
5. MQ = A
6. M = 1000
7. MULTIPLY
8. PAUSE
9. PRINT*

10. MQ = 100
11. M = 0101
12. MULTIPLY
13. PAUSE
14. PRINT

PROBLEM 15.
1. MQ = 010
2. M = 0010
3. MULTIPLY
4. PAUSE
5. MQ = A
6. M = 0111
7. MULTIPLY
8. PAUSE
9. PRINT*

10. MQ = 100
11. M = 10.01
12. MULTIPLY
13. PAUSE
14. PRINT

Date
March 1

March 2

March 15

March 20

March 23

March 25

Computer Output
Would Be

Balance
$20.00

$35.00

$61.00

$47.00

$75.00

$62.00

*In Step 9 of Problems 14 and 15, multiply the decimal value of the ACCUMULATOR
by 10 before writing it down.

- 62 -

CHAPTER 14

HOW TO PROGRAM YOUR

DIGI-COMP II PROBLEMS ON

A COMMERCIAL ELECTRONIC DIGITAL COMPUTER

There are many different compiler languages available for use in computers. All of
the languages are similar in concept but vary slightly in application as indeed
DIGI-TRAN itself does. Since FORTRAN has been for years one of the more popular
computer languages it has been chosen to illustrate how the DIGI-COMP II language
that you have learned can be translated into another typical computer language.
The problems that will be written in FORTRAN in this chapter can then be applied to
numerous existing commercial digital computers such as the -

IBM 1620
IBM 1401
IBM 1410
IBM 7070
IBM 7074
IBM 704
IBM 709
IBM 7090
CDC 1604
Hone ywe 11 800

DIFFERENCES BETWEEN
"DIGI-TRAN AND FORTRAN"
There are three basic differences between the DIGI-TRAN and the FORTRAN
languages. FIRST, and most important, is that in the use of DIGI-COMP II,
most commands actually refer to things YI)U must do, while in a large electronic
computer, the commands specifically tell the machine what to do. Once the
program is punched in to the cards the programmer does nothing until the
problem is completed.

SECONDLY, a computer has the ability to read mathematical signs which are
coded on the cards. That is, an ADD command would be written as a plus (+)
sign rather than the word ADD. This is simply a convenience to the programmer.
FORTRAN could just as easily have been designed to accept ADD instead of +.

The THIRD difference results in a further convenience to the programmer. The
computer is equipped with an automatic binary-decimal converter. So the
programmer puts in his data in decimal form and reads it out in decimal form.
Of course the computer operates in the binary sys~em just as your DIGI-COMP II does.

Actually in your studies with DIGI-COMP II you have learned more of the
fundamentals of computer operation than many programmers do working with
electronic computers. This is so because the input-output conversion work has
been done for them by the electronic computers, while with DIGI-COMP II you had
to do the work of converting. In fact, if you have learned everything in this
DIGI-COMP II Manual and you have mastered the material in our DIGI-COMP I
Manuals* you will have most of the basic theoretical working knowledge to
understand the organization and operation of ELECTRONIC DIGITAL computers!

* There are two DIGI-COMP I Manuals - the Basic and the Advanced.

- 63 -

Perhaps the easiest way to introduce FORTRAN is tc? write some of the
programs of Chapter 13 in FORTRAN and compare them to the original
DIGI-TRAN Programs.

PROBLEM 1:
If A equals the area of the rectangle then the program would simply be written:

A=5*13

Where the asterisk means MULTIPLY.

PROBLEM 2:
The MUL TIPL Y and MUL TIPL Y-ADD operations of this problem can be
summarized in one command.

A=4*9+4*9

PROBLEM 3:
The division of two numbers is indicated by a diagonal slash (/). So
the program for multiplying 5 times 9 and dividing that by 15 is:

A = 5 * 9/ 15

PROBLEM 4:
The Transfer Command used in this problem has the same symbology and
meaning it would have in FORTRAN, however it is unnecessary since the
electronic computer will accept several sub-commands within one statement. If
the weight of the air is W then the program would be:

W= 2 * 3 * 15

PROBLEM 5:
In an electronic computer negative numbers are handled automatically. There is
no need to recomplement the answer. The weight (W) of the object in water
would be simply given by:

W = 28 - 13

The FORTRAN LANGUAGE contains many other commands which make it
possible to do such things as the Iteration in Problem 6 and the other programs
which follow. The explanation of these commands however involve concepts
which are beyond the scope of this Instruction Manual.

In spite of this, it should be clear that the type of programming you have been
doing for DIGI-COMP II is not too different from that for an electronic
computer, and that we have dispelled some of the mysteries that surround
computers. '

- 64 -

THIS REPLACES UPPER HALF OF PAGE 12. IT BETTER DEMONSTRATES
THE PROPER METHOD FOR READING DIGI·COMP II REGISTERS.

So the decimal number in the ACCUMULATOR is 86.
Note that only wh en a 1 i s up do we include the
value of that FLIP-FLOP toward the total.

To be sure we understand, another example is,

So the number in this example is 35. Later when
you learn about binary numbers you will be
able to both read and set in binary numbers without
the aid of the little decimal numbers on each
FLIP-FLOP.

The MQ and MEMORY REGISTERS are read the
same way. For example, for the MEMORY
REGISTER -

and similarly for the MQ Register.

', 0 , ..., ,

~
~

r6! " ,.

o! '

o
2
4

o
16

o

1

2

o
o
o

32

+0
35

1
o
4

Your DIGI-COMP II has been carefully inspected. If you should damage or lose any
part, send the name and number of the part (see parts list in assembly instructions)
together with SO¢ for handling & mailing costs.

to

E.S.R., Inc.
34 LABEL STREET

MONTCLAIR, N.J. 07042

MORE ABOUT YOUR DIGI-COMP II

As you can well imagine, a great deal of effort has gone into the writing of this
Manual. However we expect to develop an advanced Manual for DIGI-COMP II at a
later date, just as we wrote the Advanced Manual for DIGI-COMP I. If you wish to be
kept posted on these further developments, send in the coupon below and we will put
you on our mailing list.

Command
MUL TIPL Y=ON
MUL TIPLY=OFF
CLEAR=ON
CLEAR=OFF
COUNT=ON
COUNT=OFF
COMPLEMENT=ON
COMPLEMENT=OFF
OVERFLOW=RUN
OVERFLOW=HAL T
A-M=AUTO
A-M=MANUAL
START
PAUSE

A=XXX.XXXX

M=A

A~M

PRINT X
If (A > X); 8, 3

SHIFT LEFT

ROUND (XX.XX)

Digi. Tran Command I
COUNT

CLEAR

ADD

MULTIPLY

SUBTRACT

DIGI-COMP II®
Programmer's Card

MACHINE LANGUAGE COMMANDS
Definition

Turn MUL TIPL Y SWITCH to the RIGHT
Turn MUL TIPL Y SWITCH to the LEFT
Turn CLEAR SWITCH to the RIGHT
Turn CLEAR SWITCH to the LEFT
Turn COUNT SWITCH to the RIGHT
Turn COUNT SWITCH to the LEFT
Turn COMPLEMENT SWITCH to the LEFT
Turn COMPLEMENT SWITCH to the RIGHT
Turn OVERFLOW SWITCH to the LEFT
Turn OVERFLOW SWITCH to the RIGHT
Turn A-M SWITCH to the LEFT
Turn A-M SWITCH to the RIGHT
Pull the START SWITCH
Pause until the computer has completed its automatic cycle before
continuing with program.
Means that there is an imaginary Binary Point between the bits in
A4 and AS. It must be remembered by the programmer.
Put the contents of the MEMORY REGISTER into the ACCUMULATOR
REGISTER.

Interchange the contents of the ACCUMULATOR and MEMORY
REGISTERS.
Write down the value of X.
If A is greater than X go to Step 8, if A is less than or equal to X
go back to Step 3.

Manually shift the ACCUMULATOR left by one place by moving each
bit down one ~lace.
Round the number to the form shown in the parentheses. (Remember
that if the highest order bit which is truncated is A 1, that 1 should
be added to the lowest order bit which is preserved.)
DIGI· TRAN COMPILER LANGUAGE COMMANDS

Machine LanQuaQe DiQi· Tran Command
Machine Language

ProQram Proqram
1. INITIALIZE S. PAUSE 2. A =0000000

SllBTRACT 6. MULTIPLY=ON 3. COUNT=ON 7. COMPLEMENT=OFF
4. START 8. START
1. INITIALIZE 1. INITIALIZE
2. CLEAR=ON 2. MQ=111
3. AM=MANUAL 3. COMPLEMENT=ON
4, START DIVIDE 4. START
1. INITIALIZE 5. PAUSE
2. MUL TIPLY=ON 6. COMPLEMENT=OFF
3. MQ=001 7. MUL TIPL Y=ON
4. START 8. OVERFLOW=HALT
1. INITIALIZE 9. START
2. MULTIPLY=ON 1. INITIALIZE
3. A=OOOOOOO COMPLEMENT 2. COMPLEMENT=ON
4. START 3. START
1. INITIALIZE 1. INITIALIZE
2. COMPLEMENT=ON MUL TIP LY-ADD 2. MULTIPLY
3. MQ=001 (AxB+C) 3. A=C
4. START 4. START

BINARY-DECIMAL CONVERSION TABLE

Decimal No. Binary No. Decimal No. Binary No. Decimal No. Binary No.
0 0000000 43 0101011 86 1010110
1 0000001 44 0101100 87 1010111
2 0000010 45 0101101 88 1011000
3 0000011 46 0101110 89 1011001
4 0000100 47 0101111 90 1011010
5 0000101 48 0110000 91 1011011
6 0000110 49 0110001 92 1011100
7 0000111 50 0110010 93 1011101
8 0001000 51 0110011 94 1011110
9 0001001 52 0110100 95 1011111

10 0001010 53 0110101 96 1100000
11 0001011 54 0110110 97 1100001
12 0001100 55 0110111 98 1100010
13 0001101 56 0111000 99 1100011
14 0001110 57 0111001 100 1100100
15 0001111 58 0111010 101 1100101
16 0010000 59 0111011 102 1100110
17 0010001 60 0111100 103 1100111
18 0010010 61 0111101 104 1101000
19 0010011 62 0111110 105 1101001
20 0010100 63 0111111 106 1101010
21 0010101 64 1000000 107 1101011
22 0010110 65 1000001 108 1101100
23 0010111 66 1000010 109 1101101
24 0011000 67 1000011 110 1101110
25 0011001 68 1000100 111 1101111
26 0011010 69 1000101 112 1110000
27 0011011 70 1000110 113 1110001
28 0011100 71 1000111 114 1110010
29 0011101 72 1001000 115 1110011
30 0011110 73 1001001 116 1110100
31 0011111 74 1001010 117 1110101
32 0100000 75 1001011 118 1110110
33 0100001 76 1001100 119 1110111
34 0100010 77 1001101 120 1111000
35 0100011 78 1001110 121 1111001
36 0100100 79 1001111 122 1111010
37 0100101 80 1010000 123 1111011
38 0100110 81 1010001 124 1111100
39 0100111 82 1010010 125 1111101
40 0101000 83 1010011 126 1111110
41 0101001 84 1010100 127 1111111
42 0101010 85 1010101 128 10000000

I
etc.

